Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2014/15

Lecture lll: Multi-dimensional Indexing

Querying Multi-dimensional Data

SELECT =*
FROM CUSTOMERS

WHERE ZIPCODE BETWEEN 8000 AND 8999
AND REVENUE BETWEEN 3500 AND 6000

* This example query involves a range predicate in
two dimensions.

 The general case: spatial queries over spatial data.

Spatial Data

e Spatial data is used to model multi-dimensional points,
lines, rectangles, polygons, cubes, and other geometric
objects that exist in space.

* Two main types:
— Point Data
— Region Data

Point Data

* Points in a multi-dimensional space
* No area or volume

 Examples:

— Raster data such as satellite imagery, where each pixel stores
a directly measured value corresponding to a location in
space (e.g., temperature, color)

— Feature vectors extracted from images, text, signals such as
time series, where the point data is obtained by transforming
a data object

Region Data

* Objects have spatial extent (i.e., occupy a certain
region of space) characterized by their location and
boundary.

* DB typically stores geometric approximations for
objects called “vector data”, which is constructed
using points, line segments, polygons, etc.

 Examples:

— Geographic applications (roads and rivers represented as
line segments; countries and lakes represented as polygons)

— Computer-Aided Design (CAD) applications (airplane wing
represented as polygons)

A Familiar Example for Spatial Data

with Points, Lines, and Regions
S

Acher
S| Kehl TGO
' mﬂw"fgﬂ
Offenburg
[/ Lahr
/ Wolfach/
Rust Halbmeil
AN Hausach
- volpors
mer. RWF
¢ A\SB---
Emmendinge Triberg s (i

Villingen- ~~ Trasgingen
%" Schwenninge
n ini
[1] e
H

0 e e s YA

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science

Spatial Queries

e Spatial queries refer to queries on spatial data.

 Three main types:
— Spatial range queries
— Nearest neighbor queries
— Spatial join queries

Spatial Range Queries

e A spatial range query has an associated region (i.e.,
location and boundary).

 The query should return all regions that overlap the
specified range or all regions contained within the
specified range.

* Examples: relational queries, GIS queries, CAD/CAM
gueries.

— Find all employees with salaries between S50K and S60K,
and ages between 40 and 50.

— Find all cities within 100 kilometers of Freiburg.
— Find all rivers in Baden-Wirttemberg.

Nearest Neighbor Queries

* A nearest neighbor query (k-NN) returns the k objects

that have the smallest distance to a given reference
object.

e Results must be ordered by proximity.
 Examples: GIS queries, similarity search in multi-media
databases

— Find the 10 cities nearest to Freiburg.

— Find the 10 images that are the most similar to this picture

of the criminal suspect (using feature vector point data for
images).

Spatial Join Queries

In a spatial join query, the join condition involves regions
and proximity.

These queries often times involve self-join operations and
are expensive to evaluate.

Example: Consider a relation with points representing a
city or a mountain.

— Find pairs of cities within 200 kilometers of each other.

— Find all cities near a mountain.

It gets more complex if we represent objects with region
data instead of point data.

Spatial Applications Recap

Traditional relations with k fields ~ collections of k-
dimensional points

Geographic Information Systems (GIS)

— Geo-spatial information (2- and 3-dim datasets)

— All types of spatial queries and data are common.

Computer-Aided Design/Manufacturing (CAD/CAM)

— Store spatial objects such as surface of airplane wing

— Both point and range data.

— Range queries and spatial join queries are the most common.
Multi-media Databases

— Images, audio, video, text, etc. stored and retrieved by content
— First converted to feature vector form (high dimensionality)

— Nearest-neighbor queries (for querying similarity) are the most
common.

Many Solutions for Multi-dimensional Indexing

Quad Tree [Finkel 1974] K-D-B-Tree [Robinson 1981]
R-tree [Guttman 1984] Grid File [Nievergelt 1984]
R+-tree [Sellis 1987] LSD-tree [Henrich 1989]
R*-tree [Geckmann 1990] hB-tree [Lomet 1990]
Vp-tree [Chiueh 1994] TV-tree [Lin 1994]

UB-tree [Bayer 1996] hB--tree [Evangelidis 1995]
SS-tree [White 1996] X-tree [Berchtold 1996]
M-tree [Ciaccia 1996] SR-tree [Katayama 1997]
Pyramid [Berchtold 1998] Hybrid-tree [Chakrabarti 1999]
DABS-tree [Bohm 1999] |Q-tree [Bohm 2000]
Slim-tree [Faloutsos 2000] landmark file [Bohm 2000]

P-Sphere-tree [Goldstein 2000] A-tree [Sakurai 2000]

> Note that none of these is a “fits all” solution.

Can’t we just use a B*-tree?
Mavbe two B*-trees, over ZIPCODE and REVENUE each?

-
L} bl] ol]
- L
L] . i. -] . . & . . i. »
] - - - . .
.. . .0 . . Y * .
. . . | . ¥ ®
g = [g = | - L P = -
L] L] - L] L W L -
. - .
.= . a® .' - L] '-". . a®
- " - s -
LI I- -i - L] - . a9 ® .

L] -
L] - - [1
s % L] . &g e % L] LI] s %
'] L] - - ™ L] - -

S A oo l_})*_' L RN
Can only scan along either index at once, and both of
them produce many false hits.

If all you have are these two indexes, you can do index
intersection:

— Perform both scans in separation to obtain the rids of candidate
tuples.

— Then compute the (expensive!) intersection between the two
rid lists (IBM DB2: IXAND — index AND’ing).

Maybe with a Composite Key?

| REVENUE REVENUE

ZIPCODE ZIPCODE
(REVENUE, ZIPCODE) index (ZIPCODE, REVENUE) index

* Exactly the same thing!

— Indexes over composite keys are not symmetric: The major attribute
dominates the organization of the B+-tree.

* Again, you can use the index if you really need to. Since the
second argument is also stored in the index, you can discard
non-qualifying tuples before fetching them from the data
pages.

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 15

Single-dimensional Indexes

* B*-trees are fundamentally single-dimensional indexes.

* When we create a composite search key in B*-tree, e.g., an
index on <age, sal>, we effectively linearize the 2-dimensional
space, since we sort the data entries first by age and then by

sal.

* Consider the following

data entries:
<11, 80>
<12, 10>
<12, 20>
<13, 70>

------ >----- linear sort order
in B*-tree

sal

80
70
60
50
40
30
20
10

— > age
111213

Multi-dimensional Indexes

A multi-dimensional index clusters entries so as to exploit
“nearness” in multi-dimensional space.

* Keeping track of entries and maintaining a balanced index
structure presents a challenge.

* Consider the following R :

A
<age, sal> data entries: 5758 @ o
<11, 80> 60| T
<12, 10> 50
<12, 20> 40
---- spatial clustersin 30| _______
<13, 70> L} 3 multi-dim index 20 @
10 9

> age
111213

Example Queries (B*-tree vs. Multi-dim)

* gge<12
— B*-tree performs better than the multi-dim index.
e sal< 20

— B*-tree can not be used, since age is the first field in the search
key.

* age< 12 AND sal < 20

— B*-tree effectively utilizes only the index on age, and performs
badly if most tuples satisfy age < 12.

» If almost all data entries are to be retrieved in age order,
then the multi-dim spatial index is likely to be slower than
the B*-tree index.

Multi-dimensional Indexes

* B*-trees can answer one-dimensional queries only.

 We'd like to have a multi-dimensional index structure
that
— is symmetric in its dimensions,
— clusters data in a space-aware fashion,
— is dynamic with respect to updates, and
— provides good support for useful queries.

 We’'ll start with data structures that have been
designed for in-memory use, then tweak them into
disk-aware database indexes.

Point Quad Trees

 Abinary tree in k dimensions

=> 2k-ary tree

° ° * Each data point partitions the
data space into 2* disjoint
regions.

* In each node, a region points to

_ ° 1 :
L " B another node (representing a
e o - e refined partitioning for that
RN . .
1 region) or to a special null value.
| 11 A | > Finkel and Bentley, “Quad Trees: A Data
— |o ¢ Structure for Retrieval on Composite Keys”,
(k=2) (¢ -1-—| - Acta Informatica, vol. 4, 1974.
[P A A A R P A

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 20

Searching a Point Quad Tree

1 Function: p_search (g, node)
- |+ 2 if g matches data point in node then
) 3 | returndata point;
°? 4 else
5 P — partition containing g ;
6 if P points to null then
= 7 return not found;
. ?._r_i g else
i | 9 node' +— node pointed to by P;
- 10 return p_search (g, node") ;

{F | (—' *—l 1 Function: pointsearch (g)

" 2 return p_search (g, root) ;

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 21

Inserting into a Point Quad Tree

* Inserting a point qg,,,, into a quad tree happens analogously
to an insertion into a binary tree:

— Traverse the tree just like during a search for q,,,, until you
encounter a partition P with a null pointer.

— Create a new node n’ that spans the same area as P and is
partitioned by q,.,, with all partitions pointing to null.

— Let P pointto n’.
* Note that this procedure does not keep the tree balanced.

Evaluating Range Queries with a Point
Quad Tree Index

* To evaluate a range query (i.e., rectangular regions),
we may need to follow several children of a given quad

tree node.

1 Function: r_search (Q, node)

2 if data pointin node isin Q then
L append data point to result;

LA

foreach partition Pin node that intersects with Q do
\» node’ — node pointed to by P;

r_search (Q, node') :

O o

1 Function: regionsearch (Q)
2 return r_search (O, root) ;

Range Query Example

R4

L]
q

Uni Freiburg, WS 2014/15

Systems Infrastructure for Data Science

: A A

24

Point Quad Trees

* Point Quad Trees
v’ are symmetric with respect to all dimensions
v’ can answer point queries and region queries

* However,

X the shape of a quad tree depends on the insertion order
of its content, in the worst case degenerates into a linked
list

X null pointers are space inefficient (particularly for large k)

X they can only store point data

e Also, quad trees are designed for main memory.

k-d Trees

* |ndex k-dimensional data,
but keep the tree binary.

* For each tree level |, use a
different discriminator
dimension d, along which
to partition.

— Typically: round robin

» Bentley, “Multidimensional Binary Search
Trees Used for Associative Searching”,
—‘ Communications of the ACM, 18:9, 1975.

k-d Trees

* k-d trees inherit the positive properties of the point
qguad trees, but improve on space efficiency.

* For a given point set, we can also construct a balanced
k-d tree (v, denotes coordinate i of point v):
1 Function: kdtree (pointset, level)
2 if pointset is empty then

3 return null ;

4 else

5 p — median from pointset (along djeye) ;

6 points,.. < {v € pointset where vq,_. < Pd... }:
7 points opy — {v € pointset where vg__ = pa4,..};
8 n — new k-d tree node, with data point p ;

9 n.left — kdtree (points ., level +1) ;

10 n.right — kdtree (points g , level +1) ;

1 return n:

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 27

Balanced k-d Tree Construction

i

Resulting tree shape:

g
b

d
E‘/ \\r‘:

/N

a

h

SN

f

'_'3-l'“.

K-D-B Trees

* k-d trees improve on some of the deficiencies of point
quad trees:

v We can balance a k-d tree by re-building it. (For a limited
number of points and in-memory processing, this may be
sufficient.)

v We are no longer wasting big amounts of space.

* It’s time to bring k-d trees to the disk. The K-D-B Tree

— uses page as an organizational unit (e.g., each node in the K-
D-B tree fills a page)

— uses a k-d tree-like layout to organize each page

» John T. Robinson, “The K-D-B Tree: A Search Structure for Large Multidimensional
Dynamic Indexes”, SIGMOD’81.

K-D-B Trees

S S — page O region pages:

o—— » contain entries
(region, pagelD)

» no null pointers

pagels » form a balanced tree

. P » all regions disjoint
I — . R and rectangular

| point pages:

EENEE . » contain entries
o [P] {point, rid)

""""" B » ~» B-tree leaf nodes

Uni Freiburg, WS 2014/15 Systems Infrastructure for Data Science 30

K-D-B Trees

* K-D-B Trees
v’ are symmetric with respect to all dimensions
v cluster data in a space-aware and page-oriented fashion
v’ are dynamic with respect to updates
v’ can answer point queries and region queries

* However,
X we still don’t have support for region data and
X K-D-B Trees (like k-d trees) won’t handle deletes dynamically.

* This is because we always partitioned the data space

such that

— every region is rectangular
— regions never intersect

R-Trees

* R-trees do not have the disjointness requirement.

— R-tree inner or leaf nodes contain <region, pagelD> and
<region, rid> entries, respectively. region is the minimum
bounding rectangle that spans all data items reachable by
the respective pointer.

— Every node contains between d and 2d entries except the
root node (as in B*-tree).

— Insertion and deletion algorithms keep an R-tree balanced at
all times.

* R-trees allow the storage of point and region data.

» Antonin Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching”,
SIGMOD’84.

order: d =2

R-Tree Example

region data

R T L LR T LR r E a]

' H
l~rmrnmrmrnrat ol

Uni Freiburg, WS 2014/15

—to

H - G
paget ¢ Ll -

e e e
H
H
. RN [
]
[
' o
i L]
r
]

i greriey

: i H :
i I P
P i -
: g : i
i g : i
- ""?""""P""""""""J :
I immw

Systems Infrastructure for Data Science

=

leaf nodes

inner nodes

Searching an R-Tree

e Start at the root.

— If current node is non-leaf, for each entry <E, ptr>, if region
E overlaps Q, search subtree identified by ptr.

— If current node is leaf, for each entry <E, rid>, if E overlaps
Q, rid identifies an object that might overlap Q.
 While searching an R-tree, we may have to descend
into more than one child node for point and region
qgueries (in contrast, a B*-tree equality search goes to
just one leaf).

Inserting into an R-Tree

* Inserting into an R-tree very much resembles B*-tree
insertion:
1. Choose a leaf node n to insert the new entry.
 Try to minimize the necessary region enlargement(s).

2. If nis full, split it (resulting in n and n’) and distribute old
and new entries evenly across n and n’.

* Splits may propagate bottom-up and eventually reach the
root (as in B*-tree).

3. After the insertion, some regions in the ancestor nodes
of n may need to be adjusted to cover the new entry.

Splitting an R-Tree Node

* To split an R-tree node, we have more than one alternative.

———————————————————————

bad split good split
e Heuristic: Minimize the totally covered area.

— Goal: To reduce the likelihood of both regions being searched on
subsequent queries. Redistribute so as to minimize the total area.

— Exhaustive search for the best split is infeasible. Guttman proposes two
ways to approximate the search. Follow-up papers (e.g., the R*-tree
paper) aim at improving the quality of node splits.

Deleting from an R-Tree

* All R-tree invariants are maintained during deletions.

1. If an R-tree node n underflows (i.e., less than d entries are
left after a deletion), the whole node is deleted.

2. Then, all entries that existed in n are re-inserted into the R-
tree, as discussed before.
* Note that Step 1 may lead to a recursive deletion of n’s

parent.
— Deletion, therefore, is a rather expensive task in an R-tree.

R-Tree Variants

 The R*-tree uses the concept of forced reinserts to
reduce overlap in tree nodes. When a node overflows,
instead of splitting:

— Remove some (say, 30% of the) entries and reinsert them into
the tree.

— Could result in all reinserted entries fitting on some existing
pages, avoiding a split.

 R*-trees also use a different heuristic, minimizing box
perimeters rather than box areas during insertion.

* Another variant, the R*-tree, avoids overlap by inserting
an object into multiple leaves if necessary.

— Searches now take a single path to a leaf, at cost of redundancy.

Indexing High-dimensional Data

e Typically, high-dimensional datasets are collections of
points, not regions.

— Example: Feature vectors in multi-media applications
— Very sparse
* Nearest neighbor queries are common.

— R-tree becomes worse than sequential scan for most datasets
with more than a dozen dimensions.

* As dimensionality increases, contrast (i.e., the ratio of
distances between nearest and farthest points) usually
decreases; “nearest neighbor” is not meaningful.

— In any given data set, it is advisable to empirically test contrast.

High Dimensional Spaces

* For large k, all the techniques we discussed become

ineffective:

— Example: for k = 100, we’d get 2190 ~ 1039 partitions per node in
a point quad tree. Even with billions of data points, almost all of

these are empty.

— Consider a really big search region, cube-sized covering 95% of
the range along each dimension:

data space

query region

k——— 95 % ——

F——— 100 % ——

For k =100, the probability of a point
being in this region is still only
0.95'°° ~ 0.59 %.

— We experience the curse of dimensionality here.

Summary

Point Quad Tree
— k-dimensional analogy to binary trees; main memory only.

k-d Tree, K-D-B Tree

— k-d tree: Partition space one dimension at a time (round-
robin).

— K-D-B Tree: B*-tree-like organization with pages as nodes;
nodes use a k-d-like structure internally.

R-Tree

— Regions within a node may overlap; fully dynamic; for point
and region data.

Curse Of Dimensionality

— Most indexing structures become ineffective for large k; fall
back to sequential scanning and approximation/compression.

