
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2013/14

Lecture V: Query Optimization

Finding the “Best” Query Plan

• We already saw that there may be more than one
way to answer a given query.
– Which one of the join operators should we pick? With

which parameters (block size, buffer allocation, ...)?

• The task of finding the best execution plan is, in fact,
the “holy grail” of any database implementation.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 3

Query Plan Generation Process
• Parser: syntactical/semantical analysis
• Rewriting: optimizations independent

of the current database state (table
sizes, availability of indexes, etc.)

• Optimizer: optimizations that rely on a
cost model and information about the
current database state

 The resulting plan is then evaluated by
the system’s execution engine.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 4

Impact on Performance
• Finding the right plan can dramatically impact performance.
• In terms of execution times, these differences can easily

mean “seconds vs. days”.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 5

The SQL Parser
• Besides some analyses regarding the syntactical and

semantical correctness of the input query, the parser
creates an internal representation of the input query.

• This representation still resembles the original query:
– Each SELECT-FROM-WHERE clause is translated into a query block.
– Each Ri can be a base relation or another query block.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 6

Finding the “Best” Execution Plan
• The parser output is fed into a rewrite engine
 which, again, yields a tree of query blocks.
• It is then the optimizer’s task to come up with
 the optimal execution plan for the given query.
• Essentially, the optimizer

1. enumerates all possible execution plans,
2. determines the quality (cost) of each plan, then
3. chooses the best one as the final execution plan.

• Before we can do so, we need to answer the question:
– What is a “good” execution plan?

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 7

Cost Metrics
• Database systems judge the quality of an execution plan

based on a number of cost factors, e.g.,
– the number of disk I/Os required to evaluate the plan,
– the plan’s CPU cost,
– the overall response time observable by the user as well as the

total execution time.

• A cost-based optimizer tries to anticipate these costs and
find the cheapest plan before actually running it.
– All of the above factors depend on one critical piece of

information: the size of (intermediate) query results.
– Database systems, therefore, spend considerable effort into

accurate result size estimates.
Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 8

Result Size Estimation
• Consider a query block corresponding to a simple

SELECT-FROM-WHERE query Q.

• We can estimate the result size of Q based on
– the size of the input tables, |R1|, …, |Rn|, and
– the selectivity sel() of the predicate predicate-list.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 9

Table Cardinalities
• If not coming from another query block, the size |R| of an

input table R is available in the DBMS’s system catalogs.
• E.g., IBM DB2:

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 10

Selectivity Estimation
• General selectivity rules make a fair amount of

assumptions:
– uniform distribution of data values within a column,
– independence between individual predicates.

• Since these assumptions aren’t generally met, systems
try to improve selectivity estimation by gathering data
statistics.
– These statistics are collected offline and stored in the system

catalog.
• Example: IBM DB2: RUNSTATS ON TABLE ...

– The most popular type of statistics are histograms.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 11

Describing Value Distribution

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 12

Figure © A. Kemper

Parametric Distribution

Histogram

Example: Histograms in IBM DB2
• SYSCAT.COLDIST also

contains information like:
– the n most frequent values and

their frequency,
– the number of distinct values in

each histogram bucket.
• Some explanation:

– SEQNO: Frequency rank
– COLVALUE is a single value
– VALCOUNT with TYPE=Q

shows the number of colums
with value <= COLVALUE
(Why?)

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 13

Join Optimization (R S T)
• We’ve now translated the query into a graph of query blocks.

– Query blocks essentially are multi-way Cartesian products with a
number of selection predicates on top.

• We can estimate the cost of a given execution plan.
– Use result size estimates in combination with the cost for individual

join algorithms that we saw in the previous lecture.

• We are now ready to enumerate all possible execution plans,
i.e., all possible 3-way join combinations for each query block.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 14

R

How Many Combinations Are there?
• A join over n+1 relations R1, …, Rn+1 requires n binary joins.
• Its root-level operator joins sub-plans of k and n-k-1 join

operators (0 ≤ k ≤ n-1):

• Let Ci be the number of possibilities to construct a binary
tree of i inner nodes (join operators):

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 15

Catalan Numbers
• This recurrence relation is satisfied by Catalan numbers

describing the number of ordered binary trees with n+1
leaves:

• For each of these trees, we can permute the input
relations R1, …, Rn+1, leading to:

 possibilities to evaluate an (n+1)-way join.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 16

Search Space
• The resulting search space is enormous:

• And we haven’t yet even considered the use of k different
join algorithms (yielding another factor of k(n-1))!
Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 17

Dynamic Programming
• The traditional approach to master this search space is the

use of dynamic programming.
• Idea:

– Find the cheapest plan for an n-way join in n passes.
– In each pass k, find the best plans for all k-relation sub-queries.
– Construct the plans in pass k from best i-relation and (k-i)-relation

sub-plans found in earlier passes (1 ≤ i < k).

• Assumption:
– To find the optimal global plan, it is sufficient to only consider the

optimal plans of its sub-queries.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 18

Example: Four-relation Join
• Pass 1: (best 1-relation plans)

– Find the best access path to each of the Ri individually.

• Pass 2: (best 2-relation plans)
– For each pair of tables Ri and Rj, determine the best order to join

Ri and Rj (Ri Rj or Rj Ri ?):

• Pass 3: (best 3-relation plans)
– For each triple of tables Ri, Rj, and Rk, determine the best three-

table join plan, using sub-plans obtained so far:

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 19

12 plans
to consider

24 plans
to consider

Example: Four-relation Join (cont’d)
• Pass 4: (best 4-relation plans)

– For each set of four tables Ri, Rj, Rk, and Rl, determine the best
four-table join plan, using sub-plans obtained so far:

Overall, we looked at only 50 (sub-)plans (12+24+14=50
instead of the possible 120 four-way join plans shown in
slide # 16).

All decisions required the evaluation of simple sub-plans
only (no need to re-evaluate the interior of optPlan()).

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 20

14 plans
to consider

Dynamic Programming Algorithm

 possible_joins(R, S) enumerates the possible joins between R
and S (nested loops join, merge join, etc.).

 prune_plans(set) discards all but the best plan from set.
Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 21

Dynamic Programming: Discussion
• find_join_tree_dp() draws its advantage from filtering

plan candidates early in the process.
– In our example, pruning in Pass 2 reduced the search space

by a factor of 2, and another factor of 6 in Pass 3.

• Some heuristics can be used to prune even more plans:
– Try to avoid Cartesian products.
– Produce left-deep plans only (see the next slides).

• Such heuristics can be used as a handle to balance plan
quality and optimizer runtime.
– Example: IBM DB2:
 SET CURRENT QUERY OPTIMIZATION = n

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 22

Left/Right-Deep vs. Bushy Join Trees
• The dynamic programming algorithm explores all

possible shapes a join tree could take:

• Actual systems often prefer left-deep join trees (e.g.,
the seminal IBM System R prototype considered only
left-deep plans).
– The inner relation is always a base relation.
– Allows the use of index nested loops join.
– Easier to implement in a pipelined fashion.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 23

Joining Many Relations
• Dynamic programming still has exponential resource

requirements:
– time complexity: O(3n)
– space complexity: O(2n)

• This may still be too expensive
– for joins involving many relations (~ 10 - 20 and more),
– for simple queries over well-indexed data (where the right

plan choice should be easy to make).

• The greedy join enumeration algorithm targets
solving this case.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 24

Greedy Join Enumeration

 In each iteration, choose the cheapest join that can be made
over the remaining sub-plans.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 25

Greedy Join Enumeration: Discussion
• Greedy join enumeration:

– The greedy algorithm has O(n3) time complexity.
• The loop has O(n) iterations.
• Each iteration looks at all remaining pairs of plans in worklist: an

O(n2) task.

• Other join enumeration techniques:
– Randomized algorithms: randomly rewrite the join tree one

rewrite at a time; use hill-climbing or simulated annealing
strategy to find optimal plan.

– Genetic algorithms: explore plan space by combining plans
(“creating offspring”) and altering some plans randomly
(“mutations”).

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 26

Physical Plan Properties
• Consider the query:

 where table ORDERS is indexed with a clustered index
OK_IDX on column O_ORDERKEY.

• Possible table access plans are:
 ORDERS : full table scan: estimated I/Os: NORDERS

 index scan: estimated I/Os: NOK_IDX + NORDERS
 LINEITEM : full table scan: estimated I/Os: NLINEITEM

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 27

Physical Plan Properties
• Since the full table scan is the cheapest access method for

both tables, our join algorithms will select them as the
best 1-relation plans in Pass 1 (in both DP and GJE).

• To join the two scan outputs, we now have the following
choices:
– nested loops join, or
– hash join, or
– sort both inputs, then use merge join.

• Hash join or sort-merge join are probably the preferable
candidates here, incurring a cost of ~ 2(NORDERS + NLINEITEM).
– Overall cost: NORDERS + NLINEITEM + 2(NORDERS + NLINEITEM).

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 28

A Better Plan

• It is easy to see, however, that there is a better way to
evaluate the query:
1. Use an index scan to access ORDERS. This guarantees that

the scan output is already in O_ORDERKEY order.
2. Then only sort LINEITEM, and
3. join using merge join.
 Overall cost: (NOK_IDX + NORDERS)+ 2 * NLINEITEM

• Although more expensive as a standalone table access
plan, the use of the index pays off in the overall plan.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 29

1 2+3

Interesting Orders
• The advantage of the index-based access to ORDERS is

that it provides beneficial physical properties.
• Optimizers, therefore, keep track of such properties by

annotating candidate plans.
• IBM System R introduced the concept of interesting

orders, determined by
– ORDER BY or GROUP BY clauses in the input query, or
– join attributes of subsequent joins (merge join).

• In prune_plans(), retain
– the cheapest “unordered” plan and
– the cheapest plan for each interesting order.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 30

Query Rewriting
• Join optimization essentially takes a set of relations

and a set of join predicates to find the best join order.
• By rewriting query graphs beforehand, we can

improve the effectiveness of this procedure.
• The query rewriter applies (heuristic) rules, without

looking into the actual database state (no information
about cardinalities, indexes, etc.). In particular, it
– Pushes predicates and projections
– rewrites predicates, and
– unnests queries.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 31

Predicate/Projection Pushdown

• Applies heuristics to exploits equivalence
transformations in relational algebra

• Some examples:
1. σc1∧c2 ∧...∧ cn (R) ≡ σc1(σc2 (…(σcn(R)) …))
2. σc1(σc2 ((R)) ≡ σc2 (σc1((R))
3. If L1 ⊆ L2 ⊆ … ⊆ Ln:
 πL1(π L2 (…(π Ln(R)) …)) ≡ πL1 (R)
4. If selection only refers to attributes A1, …, An
 πA1, …, An (σc(R)) ≡ σc (πA1, …, An(R))
5. ×, ∪, ∩ und A are commutative
 R Ac S ≡ S Ac R (we already used this)

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 32

More equivalence rules

1. If c only accesses attributes in R
 σc(R Aj S) ≡ σc(R) Aj S

2. If c is a conjunction„c1 ∧ c2“,
c1 only accesses attribues in R, c2 in S
 σc(R A j S) ≡ σc(R) A j (σc2 (S))

3. Similar rules exist for projection

Heuristics:
• Push down predicates
• Push down projection

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 33

Example

• Direct flights from Basel to New York
Select c.dep
from Airport n, Connection c,
 Airport p
where n.loc = “New York” and
 n.code = c.to and
 c.from = p.code and
 p.loc = “Basel”

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 34

c

p

×

×

σn.loc = ´New York´ and ...

πc.dep

n

Splitting Predicates

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 35

×

σn.loc=. ´New York ´

σp.loc = ´Basel´

σc.from=p.code

σn.code=c.to

c

p

×

×

σn.loc = ´New York´ and ...

πc.dep

n

c

p

×

n

Selection Pushing

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 36

×

σn.loc=. ´New York ´

σp.loc = ´Basel´

σc.from=p.code

σn.code=c.to

c

p

×

n

c
p

×

×

σc.from=p.code

πc.dep

σp.loc= `Basel`

σn.loc= `NY`

σn.code=c.to

n

Introducing Joins

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 37

c
p

×

×

σc.from=p.code

πc.dep

σp.loc= `Basel`

σn.loc= `NY`

σn.code=c.to

n c
p

πc.dep

σp.loc= `Basel`

n

σn.loc= `NY`

An.code=c.to

Ac.from=p.code

What about projections?

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 38

c
p

πc.dep

σp.loc= `Basel`

n

σn.loc= `NY`

An.code=c.to

Ac.from=p.code

Predicate Simplification
• Example: Rewrite the following query

• into the following:

• Predicate simplification may enable the use of indexes and
simplify the detection of opportunities for join algorithms.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 39

Additional Join Predicates
• Implicit join predicates as in

• can be turned into explicit ones:

• This enables plans like:
– Otherwise, we would have a Cartesian product between A and C.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 40

Nested Queries
• SQL provides a number of ways to write nested queries.

– Uncorrelated sub-query:

– Correlated sub-query:

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 41

Query Unnesting
• Taking query nesting literally might be expensive.

– An uncorrelated query, e.g., need not be re-evaluated for
every tuple in the outer query.

• Often times, sub-queries are only used as a syntactical
way to express a join (or a semi-join).

• The query rewriter tries to detect such situations and
make the join explicit.

• This way, the sub-query can become part of the regular
join order optimization.

 Won Kim, “On Optimizing an SQL-like Nested Query”, ACM TODS 7:3, 1982.

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 42

Summary
• Query Parser

– Translates input query into (SFW-like) query blocks.
• Query Rewriter

– Logical (database state-independent) optimizations
• predicate/projection pushdown
• predicate simplification
• query unnesting

• Query Optimizer (join optimization)
– Find “best” query execution plan based on

• a cost model (considering I/O cost, CPU cost, ...)
• data statistics (histograms)
• dynamic programming, greedy join enumeration
• physical plan properties (interesting orders)

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 43

	Systems Infrastructure for Data Science
	Lecture V: Query Optimization
	Finding the “Best” Query Plan
	Query Plan Generation Process
	Impact on Performance
	The SQL Parser
	Finding the “Best” Execution Plan
	Cost Metrics
	Result Size Estimation
	Table Cardinalities
	Selectivity Estimation
	Describing Value Distribution
	Example: Histograms in IBM DB2
	Join Optimization (R S T)
	How Many Combinations Are there?
	Catalan Numbers
	Search Space
	Dynamic Programming
	Example: Four-relation Join
	Example: Four-relation Join (cont’d)
	Dynamic Programming Algorithm
	Dynamic Programming: Discussion
	Left/Right-Deep vs. Bushy Join Trees
	Joining Many Relations
	Greedy Join Enumeration
	Greedy Join Enumeration: Discussion
	Physical Plan Properties
	Physical Plan Properties
	A Better Plan
	Interesting Orders
	Query Rewriting
	Predicate/Projection Pushdown
	More equivalence rules
	Example
	Splitting Predicates
	Selection Pushing
	Introducing Joins
	What about projections?
	Predicate Simplification
	Additional Join Predicates
	Nested Queries
	Query Unnesting
	Summary

