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Lecture V: Query Optimization 



Finding the “Best” Query Plan 

• We already saw that there may be more than one 
way to answer a given query. 
– Which one of the join operators should we pick? With 

which parameters (block size, buffer allocation, ...)? 

• The task of finding the best execution plan is, in fact, 
the “holy grail” of any database implementation. 
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Query Plan Generation Process 
• Parser: syntactical/semantical analysis 
• Rewriting: optimizations independent 

of the current database state (table 
sizes, availability of indexes, etc.) 

• Optimizer: optimizations that rely on a 
cost model and information about the 
current database state 
 

 The resulting plan is then evaluated by 
the system’s execution engine. 
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Impact on Performance 
• Finding the right plan can dramatically impact performance. 
• In terms of execution times, these differences can easily 

mean “seconds vs. days”. 
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The SQL Parser 
• Besides some analyses regarding the syntactical and 

semantical correctness of the input query, the parser 
creates an internal representation of the input query. 

• This representation still resembles the original query: 
– Each SELECT-FROM-WHERE clause is translated into a query block. 
– Each Ri can be a base relation or another query block. 
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Finding the “Best” Execution Plan 
• The parser output is fed into a rewrite engine 
 which, again, yields a tree of query blocks. 
• It is then the optimizer’s task to come up with 
 the optimal execution plan for the given query. 
• Essentially, the optimizer 

1. enumerates all possible execution plans, 
2. determines the quality (cost) of each plan, then 
3. chooses the best one as the final execution plan. 

• Before we can do so, we need to answer the question: 
– What is a “good” execution plan? 
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Cost Metrics 
• Database systems judge the quality of an execution plan 

based on a number of cost factors, e.g., 
– the number of disk I/Os required to evaluate the plan, 
– the plan’s CPU cost, 
– the overall response time observable by the user as well as the 

total execution time. 

• A cost-based optimizer tries to anticipate these costs and 
find the cheapest plan before actually running it. 
– All of the above factors depend on one critical piece of 

information: the size of (intermediate) query results. 
– Database systems, therefore, spend considerable effort into 

accurate result size estimates. 
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Result Size Estimation 
• Consider a query block corresponding to a simple 

SELECT-FROM-WHERE query Q. 
 
 
 
 

• We can estimate the result size of Q based on 
– the size of the input tables, |R1|, …, |Rn|, and 
– the selectivity sel() of the predicate predicate-list. 
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Table Cardinalities 
• If not coming from another query block, the size |R| of an 

input table R is available in the DBMS’s system catalogs. 
• E.g., IBM DB2: 
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Selectivity Estimation 
• General selectivity rules make a fair amount of 

assumptions: 
– uniform distribution of data values within a column, 
– independence between individual predicates. 

• Since these assumptions aren’t generally met, systems 
try to improve selectivity estimation by gathering data 
statistics. 
– These statistics are collected offline and stored in the system 

catalog. 
• Example: IBM DB2: RUNSTATS ON TABLE ... 

– The most popular type of statistics are histograms. 
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Describing Value Distribution  
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Example: Histograms in IBM DB2 
• SYSCAT.COLDIST also 

contains information like: 
– the n most frequent values and 

their frequency, 
– the number of distinct values in 

each histogram bucket. 
• Some explanation: 

– SEQNO: Frequency rank 
– COLVALUE is a single value 
– VALCOUNT with TYPE=Q 

shows the number of colums 
with value <= COLVALUE 
(Why?)  
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Join Optimization (R    S    T) 
• We’ve now translated the query into a graph of query blocks. 

– Query blocks essentially are multi-way Cartesian products with a 
number of selection predicates on top. 

• We can estimate the cost of a given execution plan. 
– Use result size estimates in combination with the cost for individual 

join algorithms that we saw in the previous lecture. 

• We are now ready to enumerate all possible execution plans, 
i.e., all possible 3-way join combinations for each query block. 
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How Many Combinations Are there? 
• A join over n+1 relations R1, …, Rn+1 requires n binary joins. 
• Its root-level operator joins sub-plans of k and n-k-1 join 

operators (0 ≤ k ≤ n-1): 
 
 
 

• Let Ci be the number of possibilities to construct a binary 
tree of i inner nodes (join operators): 
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Catalan Numbers 
• This recurrence relation is satisfied by Catalan numbers 

describing the number of ordered binary trees with n+1 
leaves: 
 
 

• For each of these trees, we can permute the input 
relations R1, …, Rn+1, leading to: 
 
 

 possibilities to evaluate an (n+1)-way join. 

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 16 



Search Space 
• The resulting search space is enormous: 

 
 
 
 
 
 
 

• And we haven’t yet even considered the use of k different 
join algorithms (yielding another factor of k(n-1))! 
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Dynamic Programming 
• The traditional approach to master this search space is the 

use of dynamic programming. 
• Idea: 

– Find the cheapest plan for an n-way join in n passes. 
– In each pass k, find the best plans for all k-relation sub-queries. 
– Construct the plans in pass k from best i-relation and (k-i)-relation 

sub-plans found in earlier passes (1 ≤ i < k). 

• Assumption: 
– To find the optimal global plan, it is sufficient to only consider the 

optimal plans of its sub-queries. 
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Example: Four-relation Join 
• Pass 1: (best 1-relation plans) 

– Find the best access path to each of the Ri individually. 

• Pass 2: (best 2-relation plans) 
– For each pair of tables Ri and Rj, determine the best order to join 

Ri and Rj (Ri    Rj or Rj    Ri ?): 
 

• Pass 3: (best 3-relation plans) 
– For each triple of tables Ri, Rj, and Rk, determine the best three-

table join plan, using sub-plans obtained so far: 
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Example: Four-relation Join (cont’d) 
• Pass 4: (best 4-relation plans) 

– For each set of four tables Ri, Rj, Rk, and Rl, determine the best 
four-table join plan, using sub-plans obtained so far: 
 
 

 
 

Overall, we looked at only 50 (sub-)plans (12+24+14=50 
instead of the possible 120 four-way join plans shown in 
slide # 16). 

All decisions required the evaluation of simple sub-plans 
only (no need to re-evaluate the interior of optPlan()). 
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Dynamic Programming Algorithm 

 possible_joins(R, S) enumerates the possible joins between R 
and S (nested loops join, merge join, etc.). 

 prune_plans(set) discards all but the best plan from set. 
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Dynamic Programming: Discussion 
• find_join_tree_dp() draws its advantage from filtering 

plan candidates early in the process. 
– In our example, pruning in Pass 2 reduced the search space 

by a factor of 2, and another factor of 6 in Pass 3. 

• Some heuristics can be used to prune even more plans: 
– Try to avoid Cartesian products. 
– Produce left-deep plans only (see the next slides). 

• Such heuristics can be used as a handle to balance plan 
quality and optimizer runtime. 
– Example: IBM DB2: 
 SET CURRENT QUERY OPTIMIZATION = n 
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Left/Right-Deep vs. Bushy Join Trees 
• The dynamic programming algorithm explores all 

possible shapes a join tree could take: 
 
 
 
 

• Actual systems often prefer left-deep join trees (e.g., 
the seminal IBM System R prototype considered only 
left-deep plans). 
– The inner relation is always a base relation. 
– Allows the use of index nested loops join. 
– Easier to implement in a pipelined fashion. 
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Joining Many Relations 
• Dynamic programming still has exponential resource 

requirements: 
– time complexity: O(3n) 
– space complexity: O(2n) 

• This may still be too expensive 
– for joins involving many relations (~ 10 - 20 and more), 
– for simple queries over well-indexed data (where the right 

plan choice should be easy to make). 

• The greedy join enumeration algorithm targets 
solving this case. 
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Greedy Join Enumeration 

 In each iteration, choose the cheapest join that can be made 
over the remaining sub-plans. 
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Greedy Join Enumeration: Discussion 
• Greedy join enumeration: 

– The greedy algorithm has O(n3) time complexity. 
• The loop has O(n) iterations. 
• Each iteration looks at all remaining pairs of plans in worklist: an 

O(n2) task. 

• Other join enumeration techniques: 
– Randomized algorithms: randomly rewrite the join tree one 

rewrite at a time; use hill-climbing or simulated annealing 
strategy to find optimal plan. 

– Genetic algorithms: explore plan space by combining plans 
(“creating offspring”) and altering some plans randomly 
(“mutations”). 
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Physical Plan Properties 
• Consider the query: 

 
 
 

 where table ORDERS is indexed with a clustered index 
OK_IDX on column O_ORDERKEY. 

• Possible table access plans are: 
 ORDERS  : full table scan: estimated I/Os: NORDERS 

       index scan: estimated I/Os: NOK_IDX + NORDERS 
 LINEITEM : full table scan: estimated I/Os: NLINEITEM 
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Physical Plan Properties 
• Since the full table scan is the cheapest access method for 

both tables, our join algorithms will select them as the 
best 1-relation plans in Pass 1 (in both DP and GJE). 

• To join the two scan outputs, we now have the following 
choices: 
– nested loops join, or 
– hash join, or 
– sort both inputs, then use merge join. 

• Hash join or sort-merge join are probably the preferable 
candidates here, incurring a cost of ~ 2(NORDERS + NLINEITEM). 
– Overall cost: NORDERS + NLINEITEM + 2(NORDERS + NLINEITEM). 
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A Better Plan 

• It is easy to see, however, that there is a better way to 
evaluate the query: 
1. Use an index scan to access ORDERS. This guarantees that 

the scan output is already in O_ORDERKEY order. 
2. Then only sort LINEITEM, and 
3. join using merge join. 
 Overall cost: (NOK_IDX + NORDERS)+ 2 * NLINEITEM 

 

• Although more expensive as a standalone table access 
plan, the use of the index pays off in the overall plan. 
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Interesting Orders 
• The advantage of the index-based access to ORDERS is 

that it provides beneficial physical properties. 
• Optimizers, therefore, keep track of such properties by 

annotating candidate plans. 
• IBM System R introduced the concept of interesting 

orders, determined by 
– ORDER BY or GROUP BY clauses in the input query, or 
– join attributes of subsequent joins (merge join). 

• In prune_plans(), retain 
– the cheapest “unordered” plan and 
– the cheapest plan for each interesting order. 
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Query Rewriting 
• Join optimization essentially takes a set of relations 

and a set of join predicates to find the best join order. 
• By rewriting query graphs beforehand, we can 

improve the effectiveness of this procedure. 
• The query rewriter applies (heuristic) rules, without 

looking into the actual database state (no information 
about cardinalities, indexes, etc.). In particular, it 
– Pushes predicates and projections 
– rewrites predicates, and 
– unnests queries. 
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Predicate/Projection Pushdown 

• Applies heuristics to exploits equivalence 
transformations in relational algebra 

• Some examples: 
1. σc1∧c2 ∧...∧ cn (R ) ≡ σc1(σc2 (…(σcn(R )) …)) 
2.   σc1(σc2 ((R )) ≡ σc2 (σc1((R ))  
3. If L1 ⊆ L2 ⊆ … ⊆  Ln: 
  πL1(π L2 (…(π Ln(R )) …)) ≡ πL1 (R ) 
4. If selection only refers to attributes  A1, …, An 
        πA1, …, An (σc(R )) ≡ σc (πA1, …, An(R )) 
5. ×, ∪, ∩ und A are commutative  
  R Ac S ≡ S Ac R (we already used this) 
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More equivalence rules 

1.  If c only accesses attributes in R 
   σc(R Aj  S) ≡ σc(R) Aj  S  

2.  If c  is a conjunction„c1 ∧ c2“, 
c1 only accesses attribues in R, c2 in S 
  σc(R A j S) ≡ σc(R) A j  (σc2 (S)) 

3. Similar rules exist for projection 
 
Heuristics: 
• Push down predicates 
• Push down projection 
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Example 

• Direct flights from Basel to New York 
Select c.dep  
from Airport n, Connection c,  
     Airport p 
where n.loc = “New York” and 
 n.code = c.to and  
      c.from = p.code and 
 p.loc = “Basel” 
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Splitting Predicates 
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× 

σn.loc=. ´New York ´ 
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× 
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c 
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× 
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Selection Pushing 

Uni Freiburg, WS 2013/14 Systems Infrastructure for Data Science 36 

× 

σn.loc=. ´New York ´ 

σp.loc = ´Basel´ 

σc.from=p.code 

σn.code=c.to 

c 

p 

× 

n 

c 
p 

× 

× 

σc.from=p.code 

πc.dep 

σp.loc= `Basel` 

σn.loc= `NY` 

σn.code=c.to 

n 



Introducing Joins 
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What about projections? 
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Predicate Simplification 
• Example: Rewrite the following query 

 
 
 
 

• into the following: 
 
 
 
 

• Predicate simplification may enable the use of indexes and 
simplify the detection of opportunities for join algorithms. 
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Additional Join Predicates 
• Implicit join predicates as in 

 
 
 
 

• can be turned into explicit ones: 
 
 
 
 
 
 

• This enables plans like:  
– Otherwise, we would have a Cartesian product between A and C. 
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Nested Queries 
• SQL provides a number of ways to write nested queries. 

– Uncorrelated sub-query: 
 
 
 
 

– Correlated sub-query: 
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Query Unnesting 
• Taking query nesting literally might be expensive. 

– An uncorrelated query, e.g., need not be re-evaluated for 
every tuple in the outer query. 

• Often times, sub-queries are only used as a syntactical 
way to express a join (or a semi-join). 

• The query rewriter tries to detect such situations and 
make the join explicit. 

• This way, the sub-query can become part of the regular 
join order optimization. 
 

 Won Kim, “On Optimizing an SQL-like Nested Query”, ACM TODS 7:3, 1982. 
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Summary 
• Query Parser 

– Translates input query into (SFW-like) query blocks. 
• Query Rewriter 

– Logical (database state-independent) optimizations 
• predicate/projection pushdown 
• predicate simplification 
• query unnesting 

• Query Optimizer (join optimization) 
– Find “best” query execution plan based on 

• a cost model (considering I/O cost, CPU cost, ...) 
• data statistics (histograms) 
• dynamic programming, greedy join enumeration 
• physical plan properties (interesting orders) 
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