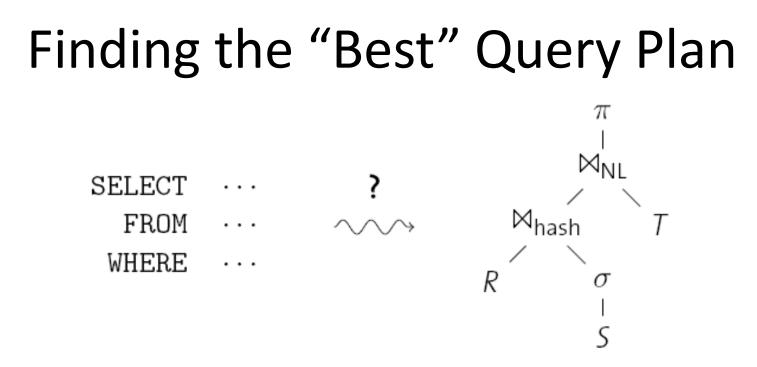
Systems Infrastructure for Data Science

Web Science Group Uni Freiburg WS 2013/14

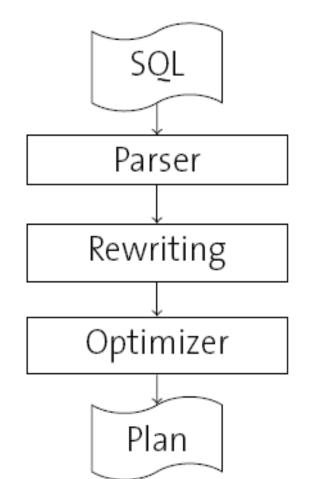
Lecture V: Query Optimization



- We already saw that there may be more than one way to answer a given query.
 - Which one of the join operators should we pick? With which parameters (block size, buffer allocation, ...)?
- The task of finding the best execution plan is, in fact, the "holy grail" of any database implementation.

Query Plan Generation Process

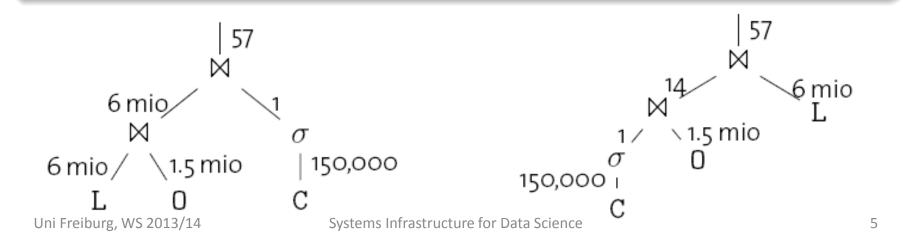
- Parser: syntactical/semantical analysis
- **Rewriting:** optimizations independent of the current database state (table sizes, availability of indexes, etc.)
- Optimizer: optimizations that rely on a cost model and information about the current database state
- The resulting plan is then evaluated by the system's execution engine.



Impact on Performance

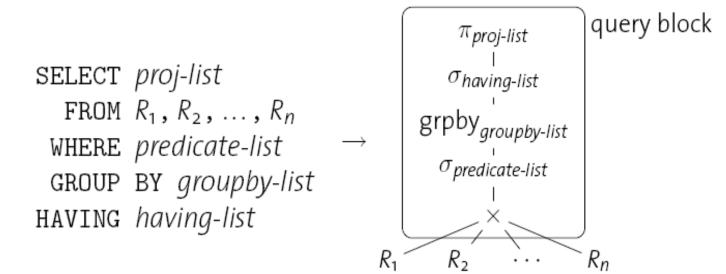
- Finding the right plan can dramatically impact performance.
- In terms of execution times, these differences can easily mean "seconds vs. days".

```
SELECT L.L_PARTKEY, L.L_QUANTITY, L.L_EXTENDEDPRICE
FROM LINEITEM L, ORDERS O, CUSTOMER C
WHERE L.L_ORDERKEY = 0.0_ORDERKEY
AND 0.0_CUSTKEY = C.C_CUSTKEY
AND C.C_NAME = 'IBM Corp.'
```



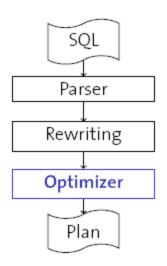
The SQL Parser

- Besides some analyses regarding the syntactical and semantical correctness of the input query, the parser creates an internal representation of the input query.
- This representation still resembles the original query:
 - Each SELECT-FROM-WHERE clause is translated into a **query block**.
 - Each R_i can be a base relation or another query block.



Finding the "Best" Execution Plan

- The parser output is fed into a rewrite engine which, again, yields a tree of query blocks.
- It is then the optimizer's task to come up with the **optimal execution plan** for the given query.
- Essentially, the optimizer
 - 1. enumerates all possible execution plans,
 - 2. determines the **quality (cost)** of each plan, then
 - 3. chooses the best one as the final execution plan.
- Before we can do so, we need to answer the question:
 - What is a "good" execution plan?

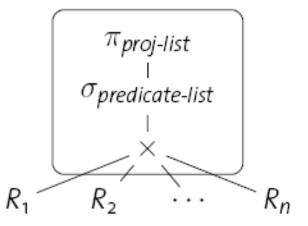


Cost Metrics

- Database systems judge the quality of an execution plan based on a number of **cost factors**, e.g.,
 - the number of **disk I/Os** required to evaluate the plan,
 - the plan's CPU cost,
 - the overall response time observable by the user as well as the total execution time.
- A cost-based optimizer tries to **anticipate** these costs and find the cheapest plan before actually running it.
 - All of the above factors depend on one critical piece of information: the size of (intermediate) query results.
 - Database systems, therefore, spend considerable effort into accurate result size estimates.

Result Size Estimation

• Consider a query block corresponding to a simple SELECT-FROM-WHERE query *Q*.



- We can estimate the result size of Q based on
 - the size of the input tables, $|R_1|$, ..., $|R_n|$, and
 - the selectivity sel() of the predicate predicate-list.

 $|Q| \approx |R_1| \cdot |R_2| \cdots |R_n| \cdot sel(predicate-list)$

Table Cardinalities

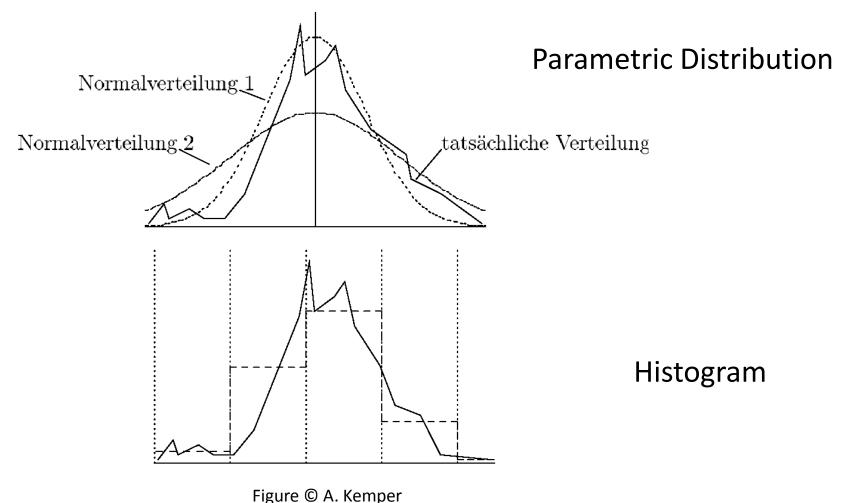
- If not coming from another query block, the size |*R*| of an input table *R* is available in the DBMS's **system catalogs**.
- E.g., IBM DB2:

db2 => SELECT TABNAME, CARD, NPAGES db2 (cont.) => FROM SYSCAT.TABLES db2 (cont.) => WHERE TABSCHEMA = 'TPCH'; TABNAME CARD NPAGES ORDERS 1500000 44331 CUSTOMER. 150000 6747 NATION 25 2 REGION 5 1 PART 200000 7578 SUPPLIER 10000 406 PARTSUPP 800000 31679 LINEITEM 6001215 207888 8 record(s) selected.

Selectivity Estimation

- General selectivity rules make a fair amount of assumptions:
 - uniform distribution of data values within a column,
 - independence between individual predicates.
- Since these assumptions aren't generally met, systems try to improve selectivity estimation by gathering data statistics.
 - These statistics are collected offline and stored in the system catalog.
 - Example: IBM DB2: RUNSTATS ON TABLE ...
 - The most popular type of statistics are **histograms**.

Describing Value Distribution



Systems Infrastructure for Data Science

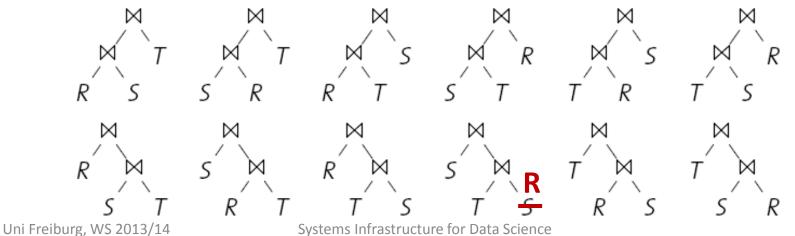
Example: Histograms in IBM DB2

- **SYSCAT**.COLDIST also contains information like:
 - the *n* most **frequent values** and their frequency,
 - the number of **distinct values** in each histogram bucket.
- Some explanation:
 - SEQNO: Frequency rank
 - COLVALUE is a single value
 - VALCOUNT with TYPE=Q shows the number of colums with value <= COLVALUE (Why?)

	r seqno, colvalue, 4 syscat.coldist	VALCOUNT		
WHERE TABNAME = 'LINEITEM'				
AND COLNAME = 'L_EXTENDEDPRICE'				
AND TYPE = 'Q';				
SEQNO	COLVALUE	VALCOUNT		
1	+000000000996.01	3001		
2	+000000004513.26	315064		
3	+000000007367.60	633128		
	+0000000011861.82			
	+000000015921.28			
	+000000019922.76	1578320		
-	+000000024103.20	1896384		
	+000000027733.58	2211448		
	+000000031961.80	2526512		
_	+000000035584.72	2841576		
	+000000039772.92	3159640		
	+0000000043395.75			
	+0000000047013.98	3789768		
10		0100100		
	•			

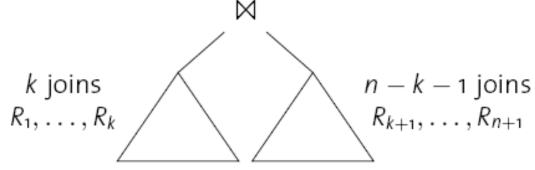
Join Optimization (R \bowtie S \bowtie T)

- We've now translated the query into a graph of query blocks.
 - Query blocks essentially are multi-way Cartesian products with a number of selection predicates on top.
- We can estimate the cost of a given execution plan.
 - Use result size estimates in combination with the cost for individual join algorithms that we saw in the previous lecture.
- We are now ready to **enumerate all possible execution plans**, i.e., all possible 3-way join combinations for each query block.

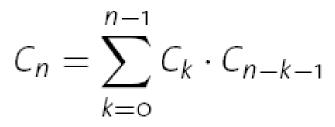


How Many Combinations Are there?

- A join over n+1 relations $R_1, ..., R_{n+1}$ requires *n* binary joins.
- Its root-level operator joins sub-plans of k and n-k-1 join operators (0 ≤ k ≤ n-1):



 Let C_i be the number of possibilities to construct a binary tree of *i* inner nodes (join operators):



Catalan Numbers

 This recurrence relation is satisfied by Catalan numbers describing the number of ordered binary trees with n+1 leaves:

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1} = \frac{(2n)!}{(n+1)!n!}$$

• For each of these trees, we can **permute** the input relations $R_1, ..., R_{n+1}$, leading to:

$$\frac{(2n)!}{(n+1)!n!} \cdot (n+1)! = \frac{(2n)!}{n!}$$

possibilities to evaluate an (n+1)-way join.

Search Space

• The resulting search space is **enormous**:

number of relations <i>n</i>	C_{n-1}	join trees
2	1	2
3	5	12
4	14	120
5	42	1,680
6	132	30,240
7	429	665,280
8	1,430	17,297,280
10	16,796	17,643,225,600

 And we haven't yet even considered the use of k different join algorithms (yielding another factor of k⁽ⁿ⁻¹⁾)!

Dynamic Programming

- The traditional approach to master this search space is the use of **dynamic programming**.
- Idea:
 - Find the cheapest plan for an *n*-way join in *n* passes.
 - In each pass k, find the best plans for all k-relation sub-queries.
 - Construct the plans in pass k from best *i*-relation and (k-i)-relation sub-plans found in earlier passes $(1 \le i < k)$.
- Assumption:
 - To find the **optimal global plan**, it is sufficient to only consider the optimal plans of its sub-queries.

Example: Four-relation Join

- **Pass 1:** (best 1-relation plans)
 - Find the best **access path** to each of the R_i individually.
- Pass 2: (best 2-relation plans)
 - For each **pair** of tables R_i and R_j , determine the best order to join R_i and R_j ($R_i \bowtie R_j$ or $R_j \bowtie R_i$?):

 $optPlan(\{R_i, R_j\}) \leftarrow best of R_i \bowtie R_j and R_j \bowtie R_i$

• Pass 3: (best 3-relation plans)

12 plans to consider

 For each triple of tables R_i, R_j, and R_k, determine the best threetable join plan, using sub-plans obtained so far:

 $optPlan(\{R_i, R_j, R_k\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k\}), \\ optPlan(\{R_j, R_k\}) \bowtie R_i, R_j \bowtie optPlan(\{R_i, R_k\}), \dots .$

24 plans to consider

Example: Four-relation Join (cont'd)

- **Pass 4:** (best 4-relation plans)
 - For each set of **four** tables R_i, R_j, R_k, and R_i, determine the best four-table join plan, using sub-plans obtained so far:

 $optPlan(\{R_i, R_j, R_k, R_l\}) \leftarrow best of R_i \bowtie optPlan(\{R_j, R_k, R_l\}), 14 plans optPlan(\{R_j, R_k, R_l\}) \bowtie R_i, R_j \bowtie optPlan(\{R_i, R_k, R_l\}), \dots, to consider optPlan(\{R_i, R_j\}) \bowtie optPlan(\{R_k, R_l\}), \dots$

- Overall, we looked at only 50 (sub-)plans (12+24+14=50 instead of the possible 120 four-way join plans shown in slide # 16).
- All decisions required the evaluation of simple sub-plans only (no need to re-evaluate the interior of optPlan()).

Dynamic Programming Algorithm

```
1 Function: find_join_tree_dp (q(R_1, \ldots, R_n))
 <sup>2</sup> for i = 1 to n do
        optPlan(\{R_i\}) \leftarrow access\_plans(R_i);
 3
    prune_plans (optPlan(\{R_i\}));
4
 5 for i = 2 to n do
        foreach S \subseteq \{R_1, \ldots, R_n\} such that |S| = i do
6
            optPlan(S) \leftarrow \emptyset;
 7
            foreach O \subset S do
8
                 optPlan(S) \leftarrow optPlan(S) \cup
9
                       possible_joins (optPlan(O), optPlan(S \ O));
10
             prune_plans (optPlan(S));
11
```

12 return *optPlan*($\{R_1, ..., R_n\}$);

possible_joins(R, S) enumerates the possible joins between R and S (nested loops join, merge join, etc.).

prune_plans(set) discards all but the best plan from set.

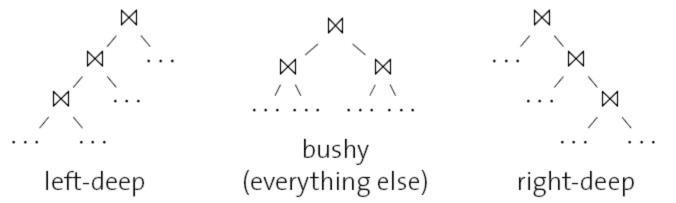
Dynamic Programming: Discussion

- *find_join_tree_dp()* draws its advantage from **filtering** plan candidates early in the process.
 - In our example, pruning in Pass 2 reduced the search space by a factor of 2, and another factor of 6 in Pass 3.
- Some heuristics can be used to prune even more plans:
 - Try to avoid Cartesian products.
 - Produce left-deep plans only (see the next slides).
- Such heuristics can be used as a handle to balance plan quality and optimizer runtime.
 - Example: IBM DB2:

SET CURRENT QUERY OPTIMIZATION = n

Left/Right-Deep vs. Bushy Join Trees

• The dynamic programming algorithm explores all possible shapes a join tree could take:



- Actual systems often prefer left-deep join trees (e.g., the seminal IBM System R prototype considered only left-deep plans).
 - The **inner** relation is always a **base relation**.
 - Allows the use of index nested loops join.
 - Easier to implement in a **pipelined** fashion.

Joining Many Relations

- Dynamic programming still has **exponential** resource requirements:
 - time complexity: $O(3^n)$
 - space complexity: O(2ⁿ)
- This may still be too expensive
 - for joins involving many relations (~ 10 20 and more),
 - for simple queries over well-indexed data (where the right plan choice should be easy to make).
- The **greedy join enumeration algorithm** targets solving this case.

Greedy Join Enumeration

- 1 Function: find_join_tree_greedy (q(R₁,..., R_n))
- 2 worklist $\leftarrow \emptyset$;
- 3 for i = 1 to n do
- 4 *worklist* \leftarrow *worklist* \cup best_access_plan(R_i);
- 5 for i = n downto 2 do
 - // worklist = $\{P_1, ..., P_i\}$

// worklist =
$$\{P_1\}$$

- 8 return single plan left in worklist;
- In each iteration, choose the cheapest join that can be made over the remaining sub-plans.

Greedy Join Enumeration: Discussion

- Greedy join enumeration:
 - The greedy algorithm has $O(n^3)$ time complexity.
 - The loop has *O(n)* iterations.
 - Each iteration looks at all remaining pairs of plans in *worklist*: an $O(n^2)$ task.
- Other join enumeration techniques:
 - Randomized algorithms: randomly rewrite the join tree one rewrite at a time; use hill-climbing or simulated annealing strategy to find optimal plan.
 - Genetic algorithms: explore plan space by combining plans ("creating offspring") and altering some plans randomly ("mutations").

Physical Plan Properties

• Consider the query:

SELECT 0.0_ORDERKEY, L.L_EXTENDEDPRICE
FROM ORDERS 0, LINEITEM L
WHERE 0.0_ORDERKEY = L.L_ORDERKEY

where table **ORDERS** is indexed with a clustered index **OK_IDX** on column **O_ORDERKEY**.

- Possible table access plans are:
 - ➢ ORDERS : full table scan: estimated I/Os: N_{ORDERS} index scan: estimated I/Os: N_{OK_IDX} + N_{ORDERS}
 ➢ LINEITEM : full table scan: estimated I/Os: N_{UNEITEM}

Physical Plan Properties

- Since the full table scan is the cheapest access method for both tables, our join algorithms will select them as the best 1-relation plans in Pass 1 (in both DP and GJE).
- To join the two scan outputs, we now have the following choices:
 - nested loops join, or
 - hash join, or
 - sort both inputs, then use merge join.
- Hash join or sort-merge join are probably the preferable candidates here, incurring a cost of ~ 2(N_{ORDERS} + N_{LINEITEM}).
 - Overall cost: $N_{ORDERS} + N_{LINEITEM} + 2(N_{ORDERS} + N_{LINEITEM})$.

A Better Plan

- It is easy to see, however, that there is a better way to evaluate the query:
 - 1. Use an **index scan** to access **ORDERS**. This guarantees that the scan output is already **in O_ORDERKEY order**.
 - 2. Then only **sort LINEITEM**, and
 - 3. join using **merge join**.

• Overall cost:
$$(N_{OK_{IDX}} + N_{ORDERS}) + 2 * N_{LINEITEM}$$

1

• Although more expensive as a standalone table access plan, the use of the index pays off in the overall plan.

2+3

Interesting Orders

- The advantage of the index-based access to **ORDERS** is that it provides beneficial **physical properties**.
- Optimizers, therefore, keep track of such properties by **annotating** candidate plans.
- IBM System R introduced the concept of **interesting orders**, determined by
 - ORDER BY or GROUP BY clauses in the input query, or
 - join attributes of subsequent joins (merge join).
- In *prune_plans()*, retain
 - the cheapest "unordered" plan and
 - the cheapest plan for each interesting order.

Query Rewriting

- Join optimization essentially takes a set of relations and a set of join predicates to find the best join order.
- By **rewriting** query graphs beforehand, we can improve the effectiveness of this procedure.
- The **query rewriter** applies (heuristic) rules, without looking into the actual database state (no information about cardinalities, indexes, etc.). In particular, it
 - Pushes predicates and projections
 - rewrites predicates, and
 - unnests queries.

Predicate/Projection Pushdown

- Applies heuristics to exploits equivalence transformations in relational algebra
- Some examples:

1.
$$\sigma_{c_{1}\wedge c_{2}\wedge\ldots\wedge c_{n}}(R) \equiv \sigma_{c_{1}}(\sigma_{c_{2}}(\ldots(\sigma_{c_{n}}(R))\ldots))$$

2. $\sigma_{c_{1}}(\sigma_{c_{2}}((R))) \equiv \sigma_{c_{2}}(\sigma_{c_{1}}((R)))$
3. If $L_{1} \subseteq L_{2} \subseteq \ldots \subseteq L_{n}$:
 $\pi_{L_{1}}(\pi_{L_{2}}(\ldots(\pi_{L_{n}}(R))\ldots)) \equiv \pi_{L_{1}}(R)$
4. If selection only refers to attributes A_{1}, \ldots, A_{n}
 $\pi_{A_{1},\ldots,A_{n}}(\sigma_{c}(R)) \equiv \sigma_{c}(\pi_{A_{1},\ldots,A_{n}}(R))$
5. \times, \cup, \cap und \bowtie are commutative
 $R \bowtie_{c} S \equiv S \bowtie_{c} R$ (we already used this)

More equivalence rules

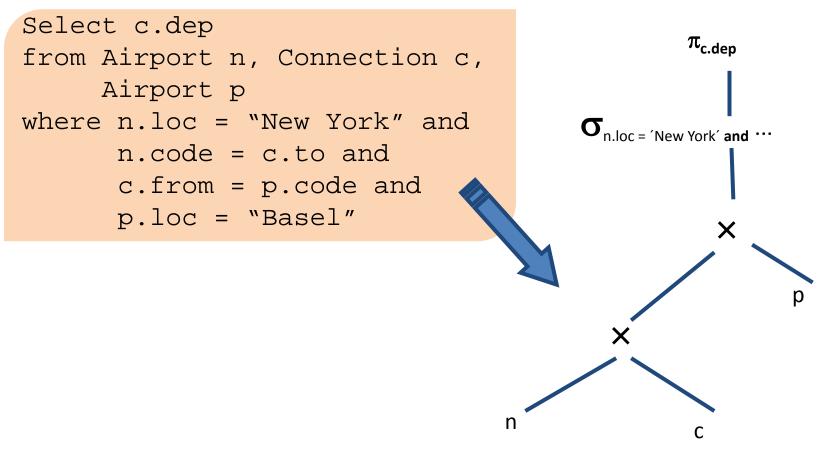
- 1. If *c* only accesses attributes in R $\sigma_c(\mathbb{R} \Join_j S) \equiv \sigma_c(\mathbb{R}) \Join_j S$ 2. If *c* is a conjunction,, $c_1 \land c_2$, c_1 only accesses attribues in *R*, c_2 in *S* $\sigma_c(\mathbb{R} \Join_j S) \equiv \sigma_c(\mathbb{R}) \Join_j (\sigma_{c_2}(S))$
- 3. Similar rules exist for projection

Heuristics:

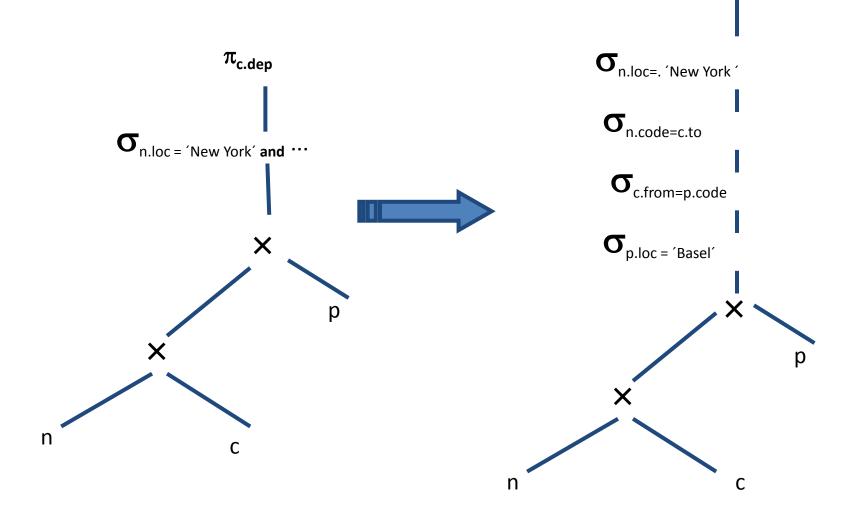
- Push down predicates
- Push down projection

Example

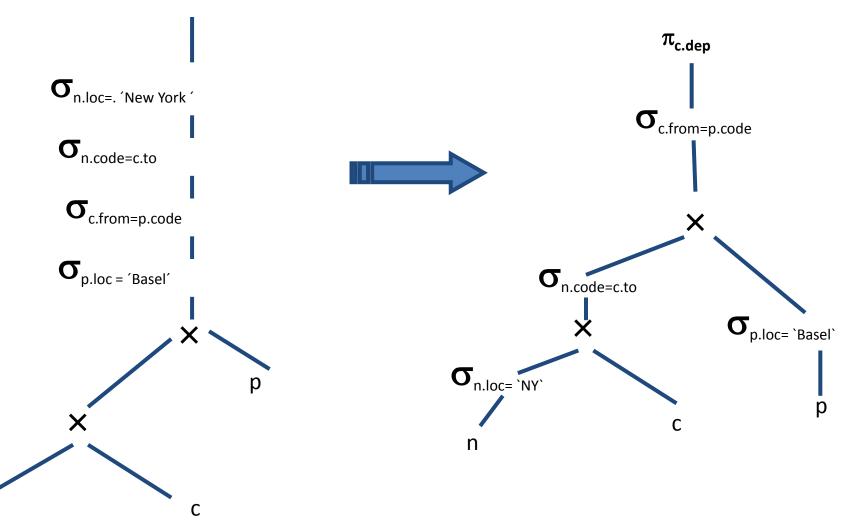
• Direct flights from Basel to New York



Splitting Predicates

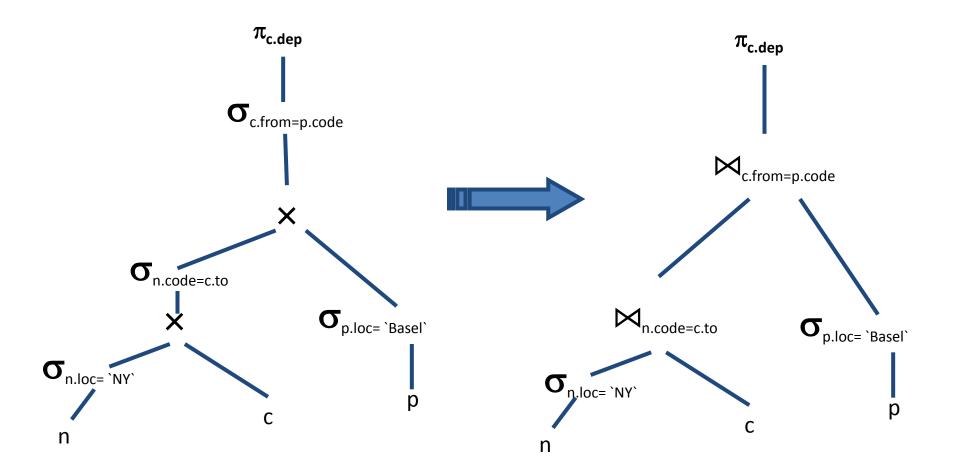


Selection Pushing

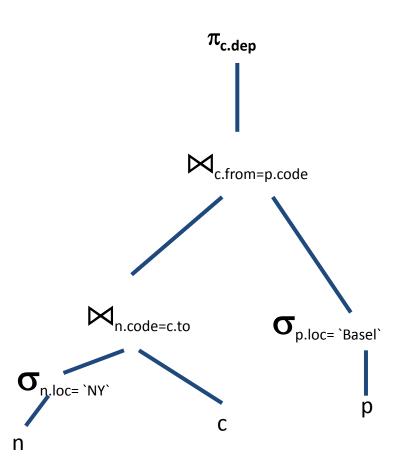


n

Introducing Joins



What about projections?



Predicate Simplification

• Example: Rewrite the following query

SELECT * FROM LINEITEM L WHERE L.L_TAX * 100 < 5

• into the following:

SELECT * FROM LINEITEM L WHERE L.L_TAX < 0.05

• Predicate simplification may enable the use of indexes and simplify the detection of opportunities for join algorithms.

Additional Join Predicates

Implicit join predicates as in

```
SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c
```

• can be turned into explicit ones:

```
SELECT *
FROM A, B, C
WHERE A.a = B.b AND B.b = C.c
AND <u>A.a = C.c</u>
```

- This enables plans like: $(A \bowtie C) \bowtie B$
 - Otherwise, we would have a Cartesian product between A and C.

Nested Queries

- SQL provides a number of ways to write **nested queries**.
 - Uncorrelated sub-query:

```
SELECT *
FROM ORDERS 0
WHERE O_CUSTKEY IN (SELECT C_CUSTKEY
FROM CUSTOMER
WHERE C_NAME = 'IBM Corp.')
```

- Correlated sub-query:

```
SELECT *
FROM ORDERS O
WHERE O.O_CUSTKEY IN
(SELECT C.C_CUSTKEY
FROM CUSTOMER C
WHERE C.C_ACCTBAL < O.O_TOTALPRICE)
```

Query Unnesting

- Taking query nesting literally might be expensive.
 - An uncorrelated query, e.g., need not be re-evaluated for every tuple in the outer query.
- Often times, sub-queries are only used as a syntactical way to express a join (or a semi-join).
- The query rewriter tries to detect such situations and make the join explicit.
- This way, the sub-query can become part of the regular join order optimization.
- ➢ Won Kim, "On Optimizing an SQL-like Nested Query", ACM TODS 7:3, 1982.

Summary

Query Parser

- Translates input query into (SFW-like) query blocks.

• Query Rewriter

- Logical (database state-independent) optimizations
 - predicate/projection pushdown
 - predicate simplification
 - query unnesting

• Query Optimizer (join optimization)

- Find "best" query execution plan based on
 - a **cost model** (considering I/O cost, CPU cost, ...)
 - data statistics (histograms)
 - dynamic programming, greedy join enumeration
 - physical plan properties (interesting orders)