
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2013/14

Lecture VIII:
Distributed query processing

and optimization

Roadmap

• Overview
• (Query Decomposition)
• Data Localization
• Query Optimization

Uni Freiburg, WS2013/14 3 Systems Infrastructure for Data Science

Query Processing Recap

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 4

Query
Processor

Declarative
query specification

Q

Procedural
query execution plan

Q’

Two important requirements:
1. Correctness: Q’ must be semantically equivalent to Q.
2. Efficiency: Q’ must have the smallest execution cost.

SQL
SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
 AND RESP = “Manager”

Π ENAME (EMP ENO (σ RESP=“Manager” (ASG)))

Relational Algebra

Cost Metrics

• Total cost
– processing time at all sites (CPU + I/O)
– communication time between sites

• In WANs, communication cost usually dominates.

• Query response time
– time elapsed for executing the query

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 5

What is the difference between total cost and query response time?
Does it change in distributed/parallel settings?

Complexity of Relational Algebra Operators

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 6

n: relation cardinality

To reduce costs:

 The most selective
operations should be
performed first.

 Operations should be
ordered by increasing
complexity.

Query Processing in a Centralized System

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 7

Given:
 EMP(ENO, ENAME, TITLE)
 ASG(ENO, PNO, RESP, DUR)
Query:
 Find the names of employees who are managing a project.

SELECT ENAME
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO
 AND RESP = “Manager”

Π ENAME (σ RESP=“Manager” AND EMP.ENO=ASG.ENO (EMP x ASG))

Π ENAME (EMP ENO (σ RESP=“Manager” (ASG)))

Two equivalent
execution plans.

Which one to use?

1

2

Query Processing in a Distributed System

• Query:
• Data fragments and their allocation to sites:

– Site1 : ASG1 = σ ENO ≤ “E3” (ASG))
– Site2 : ASG2 = σ ENO > “E3” (ASG))
– Site3 : EMP1 = σ ENO ≤ “E3” (EMP))
– Site4 : EMP2 = σ ENO > “E3” (EMP))
– Site5 : Result

• Assumptions:
– size(EMP) = 400, size(ASG) = 1000, size(σ RESP=“Manager” (ASG)) = 20
– tuple access cost = 1, tuple transfer cost = 10
– EMP locally indexed on ENO, ASG locally indexed on RESP
– uniform data distribution across sites

 Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 8

EMP ENO (σ RESP=“Manager” (ASG))

Query Processing in a Distributed System

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 9

1

transfer = 1000 * 10 = 10000 transfer = 400 * 10 = 4000

selection = 1000 * 1 = 1000

join = 400 * 20 * 1 = 8000

total cost = 10000 + 4000 + 1000 + 8000 = 23000

Query Processing in a Distributed System

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 10

2

selection = 10 * 1 = 10 selection = 10 * 1 = 10

transfer = 10 * 10 = 100

transfer = 10 * 10 = 100

join = 10 * 1 * 2 = 20 join = 10 * 1 * 2 = 20

transfer = 10 * 10 = 100 transfer = 10 * 10 = 100

total cost = 10 + 10 + 100 + 100 + 20 + 20 + 100 + 100 = 460

General Query Optimization Issues
• Algorithmic approach:

– Cost-based vs. Heuristics-based
• Granularity:

– Single query at a time vs. Multi-query optimization
• Timing:

– Static vs. Dynamic vs. Hybrid
• Statistics:

– what to collect, accuracy, independence, uniformity
• Decision mechanism:

– Centralized vs. Distributed vs. Hybrid
• Network topology:

– WANs vs. LANs
Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 11

Specific to
distributed
query processing

Distributed Query Processing

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 12

*

*

Query Decomposition
• Goal: To convert global declarative query into a correct

and efficient global procedural query
• Query decomposition consists of 4 steps:

1. Normalization
 Transformation of query predicates into normal form

2. Semantic Analysis
 Detection and rejection of semantically incorrect queries

3. Simplification
 Elimination of redundant predicates

4. Restructuring
 Transformation of the query into algebraic form

• No distribution-related processing.
Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 13

Sample Query
• Transformation of the query into algebraic form

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 14

Given: EMP(ENO, ENAME, TITLE)
 ASG(ENO, PNO, RESP, DUR)
 PROJ(PNO, PNAME, BUDGET, LOC)
Query: Find the names of employees
 other than J. Doe who worked
 on the CAD/CAM project
 for either 1 or 2 years.

SELECT ENAME
FROM EMP, ASG, PROJ
WHERE ASG.ENO = EMP.ENO
 AND ASG.PNO = PROJ.PNO
 AND ENAME ≠ “J. Doe”
 AND PROJ.PNAME = “CAD/CAM”
 AND (DUR = 12 OR DUR = 24)

Data Localization
• Goal: To convert an algebraic query on global relations

into an algebraic query on physical fragments
• General approach:

1. Generate a localized query by substituting each
global relation in the leaves of the operator tree
by the appropriate subtree on fragments.

• Union for horizontal fragments
• Join for vertical fragments

2. Apply reduction techniques on the localized query
to generate a simpler and an optimized operator
tree.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 15

Data Localization
Example

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 16

• EMP is fragmented as follows:
EMP1 = σ ENO ≤ “E3” (EMP)
EMP2 = σ “E3” < ENO ≤ “E6” (EMP)
EMP3 = σ ENO ≥ “E6” (EMP)

• ASG is fragmented as follows:
ASG1 = σ ENO ≤ “E3” (ASG)
ASG2 = σ ENO > “E3” (ASG)

Query plan on global relations

Data Localization
Example

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 17

Query plan on global relations Localized query plan

∪

EMP1 EMP2 EMP3

∪

ASG1 ASG2

• Reduction with Selection

– Given relation R and FR = {R1, R2, …, Rw} where Rj = σpj
(R) :

σpi
(Rj) = φ, if ∀x in R: ¬(pi (x) ∧ pj (x))

– Example: EMP is fragmented as before.

Reduced query Localized query

Data Localization
Reduction for Primary Horizontal Fragmentation

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 18

SELECT *
FROM EMP
WHERE ENO = “E5”

• Reduction with Selection

– Given relation R and FR = {R1, R2, …, Rw} where Rj = σpj
(R) :

σpi
(Rj) = φ, if ∀x in R: ¬(pi (x) ∧ pj (x))

– Example: EMP is fragmented as before.

Reduced query Localized query

Data Localization
Reduction for Primary Horizontal Fragmentation

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 19

SELECT *
FROM EMP
WHERE ENO = “E5”

• EMP is fragmented as follows:
EMP1 = σ ENO ≤ “E3” (EMP)
EMP2 = σ “E3” < ENO ≤ “E6” (EMP)
EMP3 = σ ENO ≥ “E6” (EMP)

• ASG is fragmented as follows:
ASG1 = σ ENO ≤ “E3” (ASG)
ASG2 = σ ENO > “E3” (ASG)

Data Localization
Reduction for Primary Horizontal Fragmentation
• Reduction with Join

– Apply when fragmentation is done on the join attribute
– Distribute Joins over Unions
 (R1 ∪ R2) S ⇔ (R1 S) ∪ (R2 S)
– Eliminate useless Joins
 Ri Rj = φ, if ∀x in Ri, ∀y in Rj: ¬(pi(x) ∧ pj(y))

• Example:
– EMP and ASG are fragmented as before.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 20

SELECT *
FROM EMP, ASG
WHERE EMP.ENO = ASG.ENO

Data Localization
Reduction for Primary Horizontal Fragmentation
• Reduction with Join Example (cont’d):

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 21

Localized query

Reduced query

Data Localization
Reduction for Primary Horizontal Fragmentation
• Reduction with Join Example (cont’d):

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 22

Localized query

Reduced query

• EMP is fragmented as follows:
EMP1 = σ ENO ≤ “E3” (EMP)
EMP2 = σ “E3” < ENO ≤ “E6” (EMP)
EMP3 = σ ENO ≥ “E6” (EMP)

• ASG is fragmented as follows:
ASG1 = σ ENO ≤ “E3” (ASG)
ASG2 = σ ENO > “E3” (ASG)

• Reduction with Projection
– Given a relation R defined over attributes A = {A1, ..., An} and

vertically fragmented as Ri = ΠA' (R) where A' ⊆ A :
 ΠD,K (Ri) is useless, if the set of projection attributes D is not in A‘.

• Example:
– EMP is vertically fragmented as follows:
 EMP1 = Π ENO,ENAME (EMP)
 EMP2 = Π ENO,TITLE (EMP)

Data Localization
Reduction for Vertical Fragmentation

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 23

SELECT ENAME
FROM EMP

Localized query Reduced query

Data Localization
Reduction for Derived Horizontal Fragmentation
• Example:

ASG1: ASG ENO EMP1
ASG2: ASG ENO EMP2
EMP1: σ TITLE = “Programmer” (EMP)
EMP2: σ TITLE ≠ “Programmer” (EMP)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 24

SELECT *
FROM EMP, ASG
WHERE ASG.ENO = EMP.ENO
 AND EMP.TITLE = “Mech. Eng.”

Localized query

Data Localization
Reduction for Derived Horizontal Fragmentation

• Example cont’d:

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 25

Data Localization
Reduction for Derived Horizontal Fragmentation

• Example cont’d:

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 26

Data Localization
Reduction for Derived Horizontal Fragmentation

• Example cont’d:

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 27

Data Localization
Reduction for Hybrid Fragmentation

• Combine all the reduction rules:
– Remove empty relations generated by contradicting

Selections on horizontal fragments.
– Remove useless relations generated by Projections on

vertical fragments.
– Distribute Joins over Unions in order to isolate and remove

useless Joins.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 28

Data Localization
Reduction for Hybrid Fragmentation

• Example:
EMP1 = σ ENO ≤ "E4" (Π ENO, ENAME (EMP))
EMP2 = σ ENO > "E4" (Π ENO, ENAME (EMP))
EMP3 = Π ENO, TITLE (EMP)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 29

SELECT ENAME
FROM EMP
WHERE ENO = “E5”

Localized query Reduced query

Query Optimization Recap
• Goal: To convert an algebraic query on physical

fragments into an optimized query execution plan

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 30

Query Optimization
Search Space

• Search space characterized by
alternative execution plans

• Focus on Join trees
• For N relations, there are O(N!)

equivalent Join trees that can
be obtained by applying
commutativity and associativity
rules

• Restrict the space w/ heuristics
• Example:

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 31

SELECT ENAME, RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO
 AND ASG.PNO = PROJ.PNO

3

2

1

Query Optimization
Search Strategy

• How to explore the plans in the search space
• Deterministic strategies

– Start from base relations and build plans by adding one relation at
each step

– Dynamic programming (breadth-first approach) -> Best plan is
guaranteed

– Greedy (depth-first approach)

• Randomized strategies
– Search for optimalities around a particular starting point
– Trade optimization time for execution time
– Best plan is not guaranteed
– Simulated annealing
– Iterative improvement

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 32

Query Optimization
Cost Model

• Cost metrics (i.e., what to optimize?)
– Total time
– Response time

• Database statistics (i.e., what needs to be known?)
– Several statistics about relations, fragments, attributes
 need to be maintained.
– Intermediate relation sizes/cardinalities need to be

computed.
• size(R) = cardinality(R) ∗ length(R)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 33

Cost Model
Metrics

• Total cost = CPU cost + I/O cost + Communication cost
 = Unit instruction cost ∗ # of instructions
 + Unit disk I/O cost ∗ # of disk I/Os
 + Message initiation + Transmission

• WANs: Communication cost dominates.
• LANs: All cost are equally important.
• To reduce total cost, cost of each component should be reduced.

• Response time is similar except that parallel components
should be counted only once.
• To reduce response time, process as many things in parallel as

possible (which may actually result in higher total cost).

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 34

Centralized Query Optimization
Overview

• Static query optimization
– Query optimization takes place at compile time, based on a

cost model.
– Example: System R [Selinger et al, IBM Almaden, 1970s]

• Dynamic query optimization
– Query optimization and execution steps are interleaved.
– Example: INGRES [Stonebraker et al, UC Berkeley, 1970s]

• Static-Dynamic hybrid
– Optimized plans generated at compile time are later

reoptimized at run time.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 35

Centralized Query Optimization
System R Algorithm (Recap)

• Two main steps:
1. For each relation R, determine the best access path.
2. For each relation R, determine the best join ordering.

• For Joins, there are two alternative algorithms:
1. Nested-Loop

For each tuple of external relation R (cardinality n1)
 For each tuple of internal relation S (cardinality n2)
 Join two tuples if the join predicate is true

2. Sort-Merge
 Sort R and S
 Merge R and S

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 36

System R Algorithm
Example (cont’d)

• Step 1: Determine the best access path for EMP, ASG, PROJ.
– EMP: sequential scan (no selection)
– ASG: sequential scan (no selection)
– PROJ: use the index on PNAME (selection on PNAME)

• Step 2: Determine the best join ordering.
– EMP ASG PROJ
– ASG PROJ EMP
– PROJ ASG EMP
– ASG EMP PROJ
– EMP × PROJ ASG
– PROJ × EMP ASG

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 37

Distributed Query Optimization
Overview

• New considerations
– Join ordering in a distributed setting
– Using Semijoin

• Distributed algorithms
– Distributed INGRES
– Distributed System R (i.e., System R*)
– SDD-1 based on Hill Climbing

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 38

Join Ordering in a Distributed Setting
• Simplest scenario:

– R S, when R and S are at different sites

• When there are more than two relations, we need to
worry about intermediate result sizes since these will
have to be shipped between sites.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 39

R
if size (R) < size (S)

if size (R) > size (S)
S Site 1 Site 2

• Query:
– PROJ PNO ASG ENO EMP

• Join graph:

Join Ordering in a Distributed Setting
Example

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 40

PNO ENO

PROJ

ASG

EMP Site 1

Site 2

Site 3

Join Ordering in a Distributed Setting
Example (cont’d)

1. EMP → Site 2
 At Site 2: EMP’ = EMP ASG
 EMP’ → Site 3
 At Site 3: EMP’ PROJ
2. ASG → Site 1
 At Site 1: EMP’ = EMP ASG
 EMP’ → Site 3
 At Site 3: EMP’ PROJ
3. ASG → Site 3
 At Site 3: ASG’ = ASG PROJ
 ASG’ → Site 1
 At Site 1: ASG’ EMP

4. PROJ → Site 2
 At Site 2: PROJ’ = PROJ ASG
 PROJ’ → Site 1
 At Site 1: PROJ’ EMP
5. EMP → Site 2
 PROJ → Site 2
 At Site 2: EMP PROJ ASG

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 41

Alternative execution plans:

PNO ENO

PROJ

ASG

EMP Site 1

Site 2

Site 3

• Equivalence rules:

R A S ⇔ (R A S) A S

 ⇔ R A (S A R)

 ⇔ (R A S) A (S A R)

• Example: R @ Site1, S @ Site2. Assume size(R) < size(S).

Using Semijoin

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 42

(R A S) A S
At Site2: S’ = ∏A(S)
S’ → Site 1
At Site 1: R’ = R A S’
R’ → Site 2
At Site 2: R’ A S

2 1 R A S
R → Site2
At Site2: R A S

size(ΠA(S)) + size(R A S’)) < size(R)
1 is better than 2 if:

Distributed Query Optimization Algorithms
A Comparative Overview

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 43

Algorithms Opt.
Timing

Objective
Function

Opt.
Factors

Network
Topology Semijoin Stats Fragments

Dist.
INGRES Dynamic

Resp.
time or

Total
time

Msg. Size,
Proc. Cost

General or
Broadcast No 1 Horizontal

R* Static Total
time

No. Msg.,
Msg. Size,

IO, CPU

General or
Local No 1, 2 No

SDD-1 Static Total
time Msg. Size General Yes 1,3,4,

5 No

1: relation cardinality; 2: number of unique values per attribute; 3: join selectivity factor;
4: size of projection on each join attribute; 5: attribute size and tuple size

R* Algorithm
Architecture

• Master site
– Overall coordination
– Inter-site decisions (execution sites, fragments,

data transfer methods, etc.)

• Apprentice sites
– Local decisions (local join ordering, local access

plans, etc.)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 44

R* Algorithm
Data Transfer Alternatives

• Ship-whole
– larger data transfer
– smaller number of messages
– better if relations are small

• Fetch-as-needed
– number of messages = O(cardinality of external

relation)
– data transfer per message is minimal
– better if relations are large and the selectivity is good

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 45

R* Algorithm
Join Strategies for R A S

1. Move outer relation tuples to the site of the inner relation
– Retrieve outer tuples
– Send them to the inner relation site
– Join them as they arrive

 Total Cost = cost(retrieving qualified outer tuples)
 + # of outer tuples fetched * cost(retrieving qualified inner tuples)
 + msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 46

R* Algorithm
Join Strategies for R A S

2. Move inner relation to the site of outer relation
– cannot join as they arrive; they need to be stored

Total Cost = cost(retrieving qualified outer tuples)

 + # of outer tuples fetched *
 cost(retrieving matching inner tuples
 from temporary storage)
 + cost(retrieving qualified inner tuples)
 + cost(storing all qualified inner tuples
 in temporary storage)
 + msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 47

R* Algorithm
Join Strategies for R A S

3. Move both inner and outer relations to another site

Total Cost = cost(retrieving qualified outer tuples)
 + cost(retrieving qualified inner tuples)
 + cost(storing inner tuples in storage)
 + msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size
 + msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size
 + # of outer tuples fetched*cost(retrieving inner tuples from

 temporary storage)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 48

R* Algorithm
Join Strategies for R A S

4. Fetch inner tuples as needed
– Retrieve qualified tuples at outer relation site
– Send request containing join column value(s) for outer tuples to inner

relation site
– Retrieve matching inner tuples at inner relation site
– Send the matching inner tuples to outer relation site
– Join as they arrive

 Total Cost = cost(retrieving qualified outer tuples)
 + msg. cost * (# of outer tuples fetched)
 + # of outer tuples fetched * (# of inner tuples fetched *
 avg. inner tuple size * msg. cost/msg. size)
 + # of outer tuples fetched * cost(retrieving matching inner tuples

 for one outer value)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 49

Hill Climbing Algorithm

Assume join is between three relations.
Step 1: Do initial processing
Step 2: Select initial feasible solution (ES0)
• Determine the candidate result sites - sites where a relation referenced in

the query exist
• Compute the cost of transferring all the other referenced relations to each

candidate site
• ES0 = candidate site with minimum cost

Step 3: Determine candidate splits of ES0 into {ES1, ES2}
• ES1 consists of sending one of the relations to the other relation's site
• ES2 consists of sending the join of the relations to the final result site

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 50

Hill Climbing Algorithm (cont’d)

Step 4: Replace ES0 with the split schedule which gives
 cost(ES1) + cost(local join) + cost(ES2) < cost(ES0)

Step 5: Recursively apply steps 3–4 on ES1 and ES2
 until no such plans can be found
Step 6: Check for redundant transmissions
 in the final plan and eliminate them.

(see the example in [1])

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 51

Hill Climbing Algorithm
Problems

• Greedy algorithm => determines an initial feasible
solution and iteratively tries to improve it

• If there are local minima, it may not find global
minima

• If the optimal schedule has a high initial cost, it won't
find it, since it won't choose it as the initial feasible
solution

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 52

SDD-1 Algorithm
Hill Climbing using Semijoin

Initialization
Step 1: In the execution strategy (call it ES), include all the

local processing
Step 2: Reflect the effects of local processing on the

database profile
Step 3: Construct a set of beneficial semijoin operations

(BS) as follows :
BS = Ø
For each semijoin SJi
 BS ← BS ∪ SJi if cost(SJi) < benefit(SJi)

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 53

SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)

Iterative Process

Step 4: Remove the most beneficial SJi from BS and append
it to ES

Step 5: Modify the database profile accordingly

Step 6: Modify BS appropriately

– compute new benefit/cost values

– check if any new semijoin needs to be included in BS

Step 7: If BS ≠ Ø, go back to Step 4.

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 54

SDD-1 Algorithm
Hill Climbing using Semijoin (cont’d)

Assembly Site Selection

Step 8: Find the site where the largest amount of data resides
and select it as the assembly site

Postprocessing
Step 9: For each Ri at the assembly site, find the semijoins of

the type Ri Rj
 where the total cost of ES without this semijoin is

smaller than the cost with it and remove the semijoin
from ES.

Step 10: Permute the order of semijoins, if doing so would
improve the total cost of ES.

(see the example in [1])

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 55

Distributed Query Processing and Optimization
Summary

• Query decomposition
– Declarative form => Procedural form
– Normalization, Analysis, Simplification, Restructuring

• Data localization
– Localization and reduction for different types of fragmentations

• Query optimization
– Basic components: Search space, Search strategy, Cost model
– Centralized algorithms (INGRES, System R)
– Distributed algorithms (Dist. INGRES, System R*, SDD-1)

• Join ordering and Semijoins

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 56

	Systems Infrastructure for Data Science
	Lecture VIII: �Distributed query processing �and optimization
	Roadmap
	Query Processing Recap
	Cost Metrics
	Complexity of Relational Algebra Operators
	Query Processing in a Centralized System
	Query Processing in a Distributed System
	Query Processing in a Distributed System
	Query Processing in a Distributed System
	General Query Optimization Issues
	Distributed Query Processing
	Query Decomposition
	Sample Query
	Data Localization
	Data Localization�Example
	Data Localization�Example
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Vertical Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Hybrid Fragmentation
	Data Localization�Reduction for Hybrid Fragmentation
	Query Optimization Recap
	Query Optimization�Search Space
	Query Optimization�Search Strategy
	Query Optimization�Cost Model
	Cost Model�Metrics
	Centralized Query Optimization�Overview
	Centralized Query Optimization�System R Algorithm (Recap)
	System R Algorithm�Example (cont’d)
	Distributed Query Optimization�Overview
	Join Ordering in a Distributed Setting
	Join Ordering in a Distributed Setting�Example
	Join Ordering in a Distributed Setting�Example (cont’d)
	Using Semijoin
	Distributed Query Optimization Algorithms�A Comparative Overview
	R* Algorithm�Architecture
	R* Algorithm�Data Transfer Alternatives
	R* Algorithm�Join Strategies for R A S
	R* Algorithm�Join Strategies for R A S
	R* Algorithm�Join Strategies for R A S
	R* Algorithm�Join Strategies for R A S
	Hill Climbing Algorithm
	Hill Climbing Algorithm (cont’d)
	Hill Climbing Algorithm�Problems
	SDD-1 Algorithm�Hill Climbing using Semijoin
	SDD-1 Algorithm�Hill Climbing using Semijoin (cont’d)
	SDD-1 Algorithm�Hill Climbing using Semijoin (cont’d)
	Distributed Query Processing and Optimization�Summary

