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Lecture VIII:  
Distributed query processing  

and optimization 



Roadmap 

• Overview 
• (Query Decomposition) 
• Data Localization 
• Query Optimization 
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Query Processing Recap 
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Query 
Processor 

Declarative 
query specification 

Q 

Procedural 
query execution plan 

Q’ 

Two important requirements: 
1. Correctness: Q’ must be semantically equivalent to Q. 
2. Efficiency: Q’ must have the smallest execution cost. 

SQL 
SELECT ENAME 
FROM EMP, ASG 
WHERE EMP.ENO = ASG.ENO 
     AND RESP = “Manager” 

Π ENAME ( EMP     ENO ( σ RESP=“Manager” ( ASG ))) 
 

   

Relational Algebra 



Cost Metrics 

• Total cost 
– processing time at all sites (CPU + I/O) 
– communication time between sites 

• In WANs, communication cost usually dominates. 
 

• Query response time 
– time elapsed for executing the query 
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What is the difference between total cost and query response time? 
Does it change in distributed/parallel settings? 



Complexity of Relational Algebra Operators 
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n: relation cardinality 

To reduce costs: 
 
 The most selective 
operations should be 
performed first. 
 
 Operations should be 
ordered by increasing 
complexity. 

 



Query Processing in a Centralized System 
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Given: 
 EMP(ENO, ENAME, TITLE) 
 ASG(ENO, PNO, RESP, DUR) 
Query: 
 Find the names of employees who are managing a project. 

SELECT ENAME 
FROM EMP, ASG 
WHERE EMP.ENO = ASG.ENO 
     AND RESP = “Manager” 

Π ENAME (σ RESP=“Manager” AND EMP.ENO=ASG.ENO ( EMP x ASG )) 
 

Π ENAME ( EMP     ENO ( σ RESP=“Manager” ( ASG ))) 
 

   
Two equivalent 
execution plans. 

Which one to use? 

1 

2 



Query Processing in a Distributed System 

• Query: 
• Data fragments and their allocation to sites: 

– Site1 : ASG1 = σ ENO ≤ “E3” ( ASG )) 
– Site2 : ASG2 = σ ENO > “E3” ( ASG )) 
– Site3 : EMP1 = σ ENO ≤ “E3” ( EMP )) 
– Site4 : EMP2 = σ ENO > “E3” ( EMP )) 
– Site5 : Result 

• Assumptions: 
– size(EMP) = 400, size(ASG) = 1000, size(σ RESP=“Manager” ( ASG )) = 20 
– tuple access cost = 1, tuple transfer cost = 10 
– EMP locally indexed on ENO, ASG locally indexed on RESP 
– uniform data distribution across sites 
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EMP     ENO ( σ RESP=“Manager” ( ASG )) 
 

   



Query Processing in a Distributed System 
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1 

transfer = 1000 * 10 = 10000 transfer = 400 * 10 = 4000 

selection = 1000 * 1 = 1000 

join = 400 * 20 * 1 = 8000 

total cost = 10000 + 4000 + 1000 + 8000 = 23000 



Query Processing in a Distributed System 
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2 

selection = 10 * 1 = 10 selection = 10 * 1 = 10 

transfer = 10 * 10 = 100 

transfer = 10 * 10 = 100 

join = 10 * 1 * 2 = 20 join = 10 * 1 * 2 = 20 

transfer = 10 * 10 = 100 transfer = 10 * 10 = 100 

total cost = 10 + 10 + 100 + 100 + 20 + 20 + 100 + 100 = 460 



General Query Optimization Issues 
• Algorithmic approach: 

– Cost-based vs. Heuristics-based 
• Granularity: 

– Single query at a time vs. Multi-query optimization 
• Timing: 

– Static vs. Dynamic vs. Hybrid 
• Statistics: 

– what to collect, accuracy, independence, uniformity 
• Decision mechanism: 

– Centralized vs. Distributed vs. Hybrid 
• Network topology: 

– WANs vs. LANs 
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Specific to 
distributed 
query processing 



Distributed Query Processing 
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* 

* 



Query Decomposition 
• Goal: To convert global declarative query into a correct 

and efficient global procedural query 
• Query decomposition consists of 4 steps: 

1. Normalization 
 Transformation of query predicates into normal form 

2. Semantic Analysis 
 Detection and rejection of semantically incorrect queries 

3. Simplification 
 Elimination of redundant predicates 

4. Restructuring 
 Transformation of the query into algebraic form 

• No distribution-related processing. 
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Sample Query 
• Transformation of the query into algebraic form 
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Given: EMP(ENO, ENAME, TITLE) 
 ASG(ENO, PNO, RESP, DUR) 
 PROJ(PNO, PNAME, BUDGET, LOC) 
Query: Find the names of employees 
 other than J. Doe who worked 
 on the CAD/CAM project 
 for either 1 or 2 years. 

SELECT ENAME 
FROM EMP, ASG, PROJ 
WHERE ASG.ENO = EMP.ENO 
     AND ASG.PNO = PROJ.PNO 
     AND ENAME ≠ “J. Doe” 
     AND PROJ.PNAME = “CAD/CAM” 
     AND (DUR = 12 OR DUR = 24) 



Data Localization 
• Goal: To convert an algebraic query on global relations 

into an algebraic query on physical fragments 
• General approach: 

1. Generate a localized query by substituting each 
global relation in the leaves of the operator tree 
by the appropriate subtree on fragments. 

• Union for horizontal fragments 
• Join for vertical fragments 

2. Apply reduction techniques on the localized query 
to generate a simpler and an optimized operator 
tree.  
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Data Localization 
Example 
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• EMP is fragmented as follows: 
EMP1 = σ ENO ≤ “E3” (EMP) 
EMP2 = σ “E3” < ENO ≤ “E6” (EMP) 
EMP3 = σ ENO ≥ “E6” (EMP) 
 
• ASG is fragmented as follows: 
ASG1 = σ ENO ≤ “E3” (ASG) 
ASG2 = σ ENO > “E3” (ASG) 
 

Query plan on global relations 



Data Localization 
Example 
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Query plan on global relations Localized query plan 

∪ 

EMP1 EMP2 EMP3 

∪ 

ASG1 ASG2 



• Reduction with Selection 

– Given relation R and FR = {R1,  R2, …, Rw} where Rj = σpj 
(R) : 

σpi 
(Rj) = φ,  if ∀x in R: ¬(pi (x) ∧ pj (x)) 

– Example: EMP is fragmented as before. 

 
Reduced query Localized query 

Data Localization 
Reduction for Primary Horizontal Fragmentation 
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SELECT * 
FROM EMP 
WHERE ENO = “E5” 



• Reduction with Selection 

– Given relation R and FR = {R1,  R2, …, Rw} where Rj = σpj 
(R) : 

σpi 
(Rj) = φ,  if ∀x in R: ¬(pi (x) ∧ pj (x)) 

– Example: EMP is fragmented as before. 

 
Reduced query Localized query 

Data Localization 
Reduction for Primary Horizontal Fragmentation 
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SELECT * 
FROM EMP 
WHERE ENO = “E5” 

• EMP is fragmented as follows: 
EMP1 = σ ENO ≤ “E3” (EMP) 
EMP2 = σ “E3” < ENO ≤ “E6” (EMP) 
EMP3 = σ ENO ≥ “E6” (EMP) 
 
• ASG is fragmented as follows: 
ASG1 = σ ENO ≤ “E3” (ASG) 
ASG2 = σ ENO > “E3” (ASG) 
 



Data Localization 
Reduction for Primary Horizontal Fragmentation 
• Reduction with Join 

– Apply when fragmentation is done on the join attribute 
– Distribute Joins over Unions 
 (R1 ∪ R2)      S ⇔ (R1       S) ∪ (R2       S) 
– Eliminate useless Joins 
 Ri         Rj = φ, if ∀x in Ri, ∀y in Rj: ¬(pi(x) ∧ pj(y)) 

• Example: 
– EMP and ASG are fragmented as before. 
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SELECT * 
FROM EMP, ASG 
WHERE EMP.ENO = ASG.ENO 



Data Localization 
Reduction for Primary Horizontal Fragmentation 
• Reduction with Join Example (cont’d): 
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Localized query 

Reduced query 



Data Localization 
Reduction for Primary Horizontal Fragmentation 
• Reduction with Join Example (cont’d): 
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Localized query 

Reduced query 

• EMP is fragmented as follows: 
EMP1 = σ ENO ≤ “E3” (EMP) 
EMP2 = σ “E3” < ENO ≤ “E6” (EMP) 
EMP3 = σ ENO ≥ “E6” (EMP) 
 
• ASG is fragmented as follows: 
ASG1 = σ ENO ≤ “E3” (ASG) 
ASG2 = σ ENO > “E3” (ASG) 
 



• Reduction with Projection 
– Given a relation R defined over attributes A = {A1, ..., An} and 

vertically fragmented as Ri = ΠA' (R) where A' ⊆ A : 
 ΠD,K (Ri) is useless, if the set of projection attributes D is not in A‘. 

• Example: 
– EMP is vertically fragmented as follows: 
  EMP1 = Π ENO,ENAME (EMP) 
  EMP2 = Π ENO,TITLE (EMP) 

Data Localization 
Reduction for Vertical Fragmentation 
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SELECT ENAME 
FROM EMP 

Localized query Reduced query 



Data Localization 
Reduction for Derived Horizontal Fragmentation 
• Example: 

ASG1: ASG     ENO EMP1  
ASG2: ASG     ENO EMP2  
EMP1: σ TITLE = “Programmer” (EMP) 
EMP2: σ TITLE ≠ “Programmer” (EMP)  
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SELECT * 
FROM EMP, ASG 
WHERE ASG.ENO = EMP.ENO 
     AND EMP.TITLE = “Mech. Eng.” 

Localized query 



Data Localization 
Reduction for Derived Horizontal Fragmentation 

• Example cont’d: 
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Data Localization 
Reduction for Derived Horizontal Fragmentation 

• Example cont’d: 
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Data Localization 
Reduction for Derived Horizontal Fragmentation 

• Example cont’d: 
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Data Localization 
Reduction for Hybrid Fragmentation 

• Combine all the reduction rules: 
– Remove empty relations generated by contradicting 

Selections on horizontal fragments. 
– Remove useless relations generated by Projections on 

vertical fragments. 
– Distribute Joins over Unions in order to isolate and remove 

useless Joins. 
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Data Localization 
Reduction for Hybrid Fragmentation 

• Example: 
EMP1 = σ ENO ≤ "E4" (Π ENO, ENAME (EMP)) 
EMP2 = σ ENO > "E4" (Π ENO, ENAME (EMP)) 
EMP3 = Π ENO, TITLE (EMP) 
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SELECT ENAME 
FROM EMP 
WHERE ENO = “E5” 

Localized query Reduced query 



Query Optimization Recap 
• Goal: To convert an algebraic query on physical 

fragments into an optimized query execution plan 
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Query Optimization 
Search Space 

• Search space characterized by  
alternative execution plans 

• Focus on Join trees 
• For N relations, there are O(N!) 

equivalent Join trees that can 
be obtained by  applying 
commutativity and associativity 
rules 

• Restrict the space w/ heuristics 
• Example: 
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SELECT ENAME, RESP 
FROM EMP, ASG, PROJ 
WHERE EMP.ENO = ASG.ENO 
     AND ASG.PNO = PROJ.PNO 

3 

2 

1 
 



Query Optimization 
Search Strategy 

• How to explore the plans in the search space 
• Deterministic strategies 

– Start from base relations and build plans by adding one relation at 
each step 

– Dynamic programming (breadth-first approach) -> Best plan is 
guaranteed 

– Greedy (depth-first approach) 

• Randomized strategies 
– Search for optimalities around a particular starting point 
– Trade optimization time for execution time 
– Best plan is not guaranteed 
– Simulated annealing 
– Iterative improvement 
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Query Optimization 
Cost Model 

• Cost metrics (i.e., what to optimize?) 
– Total time 
– Response time 

• Database statistics (i.e., what needs to be known?) 
– Several statistics about relations, fragments, attributes 
 need to be maintained. 
– Intermediate relation sizes/cardinalities need to be 

computed. 
• size(R) = cardinality(R) ∗ length(R) 
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Cost Model 
Metrics 

• Total cost = CPU cost + I/O cost + Communication cost 
   = Unit instruction cost ∗ # of instructions 
   + Unit disk I/O cost ∗ # of disk I/Os 
   + Message initiation + Transmission 

• WANs: Communication cost dominates. 
• LANs: All cost are equally important. 
• To reduce total cost, cost of each component should be reduced. 

• Response time is similar except that parallel components 
should be counted only once. 
• To reduce response time, process as many things in parallel as 

possible (which may actually result in higher total cost). 

 
 
 

 
 

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 34 



Centralized Query Optimization 
Overview 

• Static query optimization 
– Query optimization takes place at compile time, based on a 

cost model. 
– Example: System R [Selinger et al, IBM Almaden, 1970s] 

• Dynamic query optimization 
– Query optimization and execution steps are interleaved. 
– Example: INGRES [Stonebraker et al, UC Berkeley, 1970s] 

• Static-Dynamic hybrid 
– Optimized plans generated at compile time are later 

reoptimized at run time. 
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Centralized Query Optimization 
System R Algorithm (Recap) 

• Two main steps: 
1. For each relation R, determine the best access path. 
2. For each relation R, determine the best join ordering. 

• For Joins, there are two alternative algorithms: 
1. Nested-Loop 

For each tuple of external relation R (cardinality n1) 
 For each tuple of internal relation S (cardinality n2) 
  Join two tuples if the join predicate is true 

2. Sort-Merge 
 Sort R and S 
 Merge R and S 
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System R Algorithm 
Example (cont’d) 

• Step 1: Determine the best access path for EMP, ASG, PROJ. 
– EMP: sequential scan (no selection) 
– ASG: sequential scan (no selection) 
– PROJ: use the index on PNAME (selection on PNAME) 

• Step 2: Determine the best join ordering. 
– EMP     ASG     PROJ 
– ASG      PROJ     EMP 
– PROJ      ASG      EMP 
– ASG      EMP     PROJ 
– EMP × PROJ     ASG 
– PROJ × EMP     ASG 
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Distributed Query Optimization 
Overview 

• New considerations 
– Join ordering in a distributed setting 
– Using Semijoin 

• Distributed algorithms 
– Distributed INGRES 
– Distributed System R (i.e., System R*) 
– SDD-1 based on Hill Climbing 
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Join Ordering in a Distributed Setting 
• Simplest scenario: 

– R      S, when R and S are at different sites  
 
 
 
 

• When there are more than two relations, we need to 
worry about intermediate result sizes since these will 
have to be shipped between sites. 
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R 
if size (R) < size (S) 

if size (R) > size (S) 
S Site 1 Site 2 



• Query: 
– PROJ     PNO  ASG     ENO EMP 

 
• Join graph: 

Join Ordering in a Distributed Setting 
Example 
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PNO ENO 

PROJ 

ASG 

EMP Site 1 

Site 2 

Site 3 



Join Ordering in a Distributed Setting 
Example (cont’d) 

1. EMP → Site 2 
 At Site 2: EMP’ = EMP      ASG 
 EMP’ → Site 3 
 At Site 3: EMP’       PROJ 
2. ASG → Site 1 
 At Site 1: EMP’ = EMP      ASG 
 EMP’ → Site 3 
 At Site 3: EMP’       PROJ 
3. ASG → Site 3 
 At Site 3: ASG’ = ASG      PROJ 
 ASG’ → Site 1 
 At Site 1: ASG’      EMP 

4. PROJ → Site 2 
   At Site 2: PROJ’ = PROJ      ASG 
   PROJ’ → Site 1 
   At Site 1: PROJ’      EMP 
5. EMP → Site 2 
   PROJ → Site 2 
   At Site 2: EMP      PROJ      ASG 
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Alternative execution plans: 

PNO ENO 

PROJ 

ASG 

EMP Site 1 

Site 2 

Site 3 



• Equivalence rules: 

R     A S ⇔ (R     A S)     A S 

  ⇔ R     A (S     A R) 

  ⇔ (R     A S)     A (S     A R) 

• Example: R @ Site1, S @ Site2. Assume size(R) < size(S). 

Using Semijoin 
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(R     A S)     A S 
At Site2: S’ = ∏A(S) 
S’ → Site 1 
At Site 1: R’ = R    A S’ 
R’ → Site 2 
At Site 2: R’     A S 

2 1 R     A S  
R → Site2 
At Site2: R       A S  

size(ΠA(S)) + size(R    A S’)) < size(R) 
1 is better than 2 if: 



Distributed Query Optimization Algorithms 
A Comparative Overview 
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Algorithms Opt. 
Timing 

Objective 
Function 

Opt. 
Factors 

Network 
Topology Semijoin Stats Fragments 

Dist. 
INGRES Dynamic 

Resp. 
time or 

Total 
time 

Msg. Size, 
Proc. Cost 

General or 
Broadcast No 1 Horizontal 

R* Static Total 
time 

No. Msg., 
Msg. Size, 

IO, CPU 

General or 
Local No 1, 2 No 

 

SDD-1 Static Total 
time Msg. Size General Yes 1,3,4,

5 No 

 

1: relation cardinality; 2: number of unique values per attribute; 3: join selectivity factor; 
4: size of   projection on each join attribute; 5: attribute size and tuple size 



R* Algorithm 
Architecture 

• Master site 
– Overall coordination 
– Inter-site decisions (execution sites, fragments, 

data transfer methods, etc.) 

• Apprentice sites 
– Local decisions (local join ordering, local access 

plans, etc.) 
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R* Algorithm 
Data Transfer Alternatives 

• Ship-whole 
– larger data transfer 
– smaller number of messages 
– better if relations are small 

• Fetch-as-needed 
– number of messages = O(cardinality of external 

relation) 
– data transfer per message is minimal 
– better if relations are large and the selectivity is good 
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R* Algorithm 
Join Strategies for R     A S  

1. Move outer relation tuples to the site of the inner relation 
– Retrieve outer tuples 
– Send them to the inner relation site 
– Join them as they arrive 

 
 Total Cost = cost(retrieving qualified outer tuples)  
            + # of outer tuples fetched * cost(retrieving qualified inner tuples) 
            + msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size 

 

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 46 



R* Algorithm 
Join Strategies for R     A S  

2. Move inner relation to the site of outer relation 
– cannot join as they arrive; they need to be stored 

 
Total Cost = cost(retrieving qualified outer tuples) 

              + # of outer tuples fetched * 
    cost(retrieving matching inner tuples 
             from temporary storage) 
              + cost(retrieving qualified inner tuples) 
              + cost(storing all qualified inner tuples 
            in temporary storage)  
              + msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size 
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R* Algorithm 
Join Strategies for R     A S  

3. Move both inner and outer relations to another site 
 

Total Cost = cost(retrieving qualified outer tuples) 
              + cost(retrieving qualified inner tuples) 
              + cost(storing inner tuples in storage) 
              + msg. cost*(# of outer tuples fetched*avg. outer tuple size)/msg. size 
              + msg. cost*(# of inner tuples fetched*avg. inner tuple size)/msg. size 
              + # of outer tuples fetched*cost(retrieving inner tuples from  

                temporary storage) 
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R* Algorithm 
Join Strategies for R     A S  

4. Fetch inner tuples as needed 
– Retrieve qualified tuples at outer relation site 
– Send request containing join column value(s) for outer tuples to inner 

relation site 
– Retrieve matching inner tuples at inner relation site 
– Send the matching inner tuples to outer relation site 
– Join as they arrive  

 
 Total Cost = cost(retrieving qualified outer tuples) 
           + msg. cost * (# of outer tuples fetched) 
           + # of outer tuples fetched * (# of inner tuples fetched * 
                   avg. inner tuple size * msg. cost/msg. size) 
           + # of outer tuples fetched * cost(retrieving matching inner tuples 

            for one outer value) 
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Hill Climbing Algorithm 

Assume join is between three relations. 
Step 1: Do initial processing 
Step 2: Select initial feasible solution (ES0) 
• Determine the candidate result sites - sites where a relation referenced in 

the query exist 
• Compute the cost of transferring all the other referenced relations to each 

candidate site 
• ES0 = candidate site with minimum cost 

Step 3: Determine candidate splits of ES0 into {ES1, ES2} 
• ES1 consists of sending one of the relations to the other relation's site 
• ES2 consists of sending the join of the relations to the final result site 
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Hill Climbing Algorithm (cont’d) 

Step 4: Replace ES0 with the split schedule which gives 
  cost(ES1) + cost(local join) + cost(ES2) < cost(ES0) 

Step 5: Recursively apply steps 3–4 on ES1 and ES2 
    until no such plans can be found 
Step 6: Check for redundant transmissions 
    in the final plan and eliminate them. 

(see the example in [1]) 
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Hill Climbing Algorithm 
Problems 

• Greedy algorithm => determines an initial feasible 
solution and iteratively tries to improve it 
 

• If there are local minima, it may not find global 
minima 
 

• If the optimal schedule has a high initial cost, it won't 
find it, since it won't choose it as the initial feasible 
solution 
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SDD-1 Algorithm 
Hill Climbing using Semijoin 

Initialization 
Step 1: In the execution strategy (call it ES), include all the 

local processing 
Step 2: Reflect the effects of local processing on the 

database profile 
Step 3: Construct a set of beneficial semijoin operations 

(BS) as follows : 
BS = Ø 
For each semijoin SJi  
 BS ← BS ∪ SJi   if cost(SJi ) < benefit(SJi) 
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SDD-1 Algorithm 
Hill Climbing using Semijoin (cont’d) 

Iterative Process 

Step 4: Remove the most beneficial SJi  from BS and append 
it to ES 

Step 5: Modify the database profile accordingly 

Step 6: Modify BS appropriately 

– compute new benefit/cost values 

– check if any new semijoin needs to be included in BS 

Step 7: If BS ≠ Ø, go back to Step 4. 
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SDD-1 Algorithm 
Hill Climbing using Semijoin (cont’d) 

Assembly Site Selection 

Step 8:  Find the site where the largest amount of  data resides 
and select it as the assembly site 

Postprocessing 
Step 9: For each Ri at the assembly site, find the semijoins of 

the type Ri       Rj 
 where the total cost of ES without this semijoin is 

smaller than the cost with it and remove the semijoin 
from ES.  

Step 10: Permute the order of semijoins, if doing so would 
improve the total cost of ES.  

(see the example in [1]) 
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Distributed Query Processing and Optimization 
Summary 

• Query decomposition 
– Declarative form => Procedural form 
– Normalization, Analysis, Simplification, Restructuring 

• Data localization 
– Localization and reduction for different types of fragmentations 

• Query optimization 
– Basic components: Search space, Search strategy, Cost model 
– Centralized algorithms (INGRES, System R) 
– Distributed algorithms (Dist. INGRES, System R*, SDD-1) 

• Join ordering and Semijoins 

Uni Freiburg, WS2013/14 Systems Infrastructure for Data Science 56 


	Systems Infrastructure for Data Science
	Lecture VIII: �Distributed query processing �and optimization
	Roadmap
	Query Processing Recap
	Cost Metrics
	Complexity of Relational Algebra Operators
	Query Processing in a Centralized System
	Query Processing in a Distributed System
	Query Processing in a Distributed System
	Query Processing in a Distributed System
	General Query Optimization Issues
	Distributed Query Processing
	Query Decomposition
	Sample Query
	Data Localization
	Data Localization�Example
	Data Localization�Example
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Primary Horizontal Fragmentation
	Data Localization�Reduction for Vertical Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Derived Horizontal Fragmentation
	Data Localization�Reduction for Hybrid Fragmentation
	Data Localization�Reduction for Hybrid Fragmentation
	Query Optimization Recap
	Query Optimization�Search Space
	Query Optimization�Search Strategy
	Query Optimization�Cost Model
	Cost Model�Metrics
	Centralized Query Optimization�Overview
	Centralized Query Optimization�System R Algorithm (Recap)
	System R Algorithm�Example (cont’d)
	Distributed Query Optimization�Overview
	Join Ordering in a Distributed Setting
	Join Ordering in a Distributed Setting�Example
	Join Ordering in a Distributed Setting�Example (cont’d)
	Using Semijoin
	Distributed Query Optimization Algorithms�A Comparative Overview
	R* Algorithm�Architecture
	R* Algorithm�Data Transfer Alternatives
	R* Algorithm�Join Strategies for R     A S 
	R* Algorithm�Join Strategies for R     A S 
	R* Algorithm�Join Strategies for R     A S 
	R* Algorithm�Join Strategies for R     A S 
	Hill Climbing Algorithm
	Hill Climbing Algorithm (cont’d)
	Hill Climbing Algorithm�Problems
	SDD-1 Algorithm�Hill Climbing using Semijoin
	SDD-1 Algorithm�Hill Climbing using Semijoin (cont’d)
	SDD-1 Algorithm�Hill Climbing using Semijoin (cont’d)
	Distributed Query Processing and Optimization�Summary

