Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Lecture Il: Indexing

Indexing

[Web Forms] [Applications | " SOL Interface |
SOL Commands
1
Executor Parser

Operator Evaluator Optimizer)
O
, S
Transaction Files and Access Methods 9
Manager | k%)
Buffer Manager Recovery <
Lock T Manager -
Manager Disk Space Manager -
T
- DBMS | ©

[data file

WS

Database v

w

Figure inspired by Eamakrishnan/Gehrke: "Database Manage ment Systemns”, MoGraw-Hill zoo3.

Database File Organization and Indexing

e Remember: Database tables are implemented as files
of records:
— A file consists of one or more pages.
— Each page contains one or more records.
— Each record corresponds to one tuple in a table.

* File organization: Method of arranging the records in
a file when the file is stored on disk.

* Indexing: Building data structures that organize data
records on disk in (multiple) ways to optimize search
and retrieval operations on them.

File Organization

* Given a query such as the following:

SELECT *
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

e How should we organize the storage of our
data files on disk such that we can evaluate
this query efficiently?

Heap Files?

SELECT =*
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

* A heap file stores records in no particular order.

e Therefore, CUSTOMER table consists of records that are
randomly ordered in terms of their ZIPCODE.

* The entire file must be scanned, because the qualifying
records could appear anywhere in the file and we don’t
know in advance how many such records exist.

Sorted Files?

SELECT =*
FROM CUSTOMERS
WHERE ZIPCODE BETWEEN 8800 AND 8999

e Sort the CUSTOMERS table in ZIPCODE order.

 Then use binary search to find the first qualifying
record, and scan further as long as ZIPCODE < 8999.

N

SCan

4104 %
4123%
4222%
4450%
4528%*
5012%*
6330=*
6423%
8050=*
8105%
8180=*
8245%
8280*
8406*
8570*
8600=*
8604 *
8700=*
T 8808=*
8887 *
8910*
8953%
¥ 9016%
9200
9532%

Are Sorted Files good enough?

8808x*
8887 *
8910*
8953 %
9016*
9200 %
9532%

8700x*

8406*
8570 %
8600 *
8604 *

8050 *
8105*
8245*
8280%

8180*

5012*
6330
6423 *

*
1
o™
—
=

4222%
4450 %
4528*

4104 *

I.' o

page O pagel page2 page3 paged4 pages pageb page7 page8

m
1]

C age1o dge 1 age 12
o o

L™

T-=
m

g

T

o

sCan
v’ Scan phase: We get sequential access during this phase.

X Search phase: We need to read log,N records during this phase
(N: total number of records in the CUSTOMER table).
— We need to fetch as many pages as are required to access these records.
— Binary search involves unpredictable jumps that makes prefetching
difficult.

X What about insertions and deletions?

Tree-based Indexing

 Can we reduce the number of pages fetched during
the search phase?

 Tree-based indexing:

— Arrange the data entries in sorted order by search key value
(e.g., ZIPCODE).

— Add a hierarchical search data structure on top that directs
searches for given key values to the correct page of data
entries.

— Since the index data structure is much smaller than the data
file itself, the binary search is expected to fetch a smaller
number of pages.

— Two alternative approaches: ISAM and B*-tree.

Indexed Sequential Access Method

ISAM

saded xapul

saded
e1ep

" *ZES6

*00Z6
*9106

*£G68
*0168

*.888

" %8088

*00.L8
*7098

*0098
*0.LS8

*90%8

%0828

| *S¥C8

*0818

*5018

71 %0508

*ECV9
*0EED

*CT10S
*8C5T

*0ST¥
*CoCl

*ECTIV

*FOTH

All nodes are of the size of a page.

key

kn EELH

pointer

index entry

}D

— hundreds of entries per page
— large fan-out, low depth

Search cost ~ loge., ,.:N

P

1

k1;m k> P

$
|
b

Key k; serves as a “separator” for the

pages pointed to by p, ; and p..

10

ISAM Index Structure

* Index pages stored at non-leaf nodes

e Data pages stored at leaf nodes
— Primary data pages & Overflow data pages

0 e e
80 Non-leaf — ' T
Q. Pages *eo
g J; i
)
©
IS o D e E-E -2 -
=+ s 4y
3
8 I_E.af e A . am o oA
?;P Pages ;'*. ;} * - r
Q .
© Overflow ——-- > -
= age .
g Pag Primary pages

Updates on ISAM Index Structure

 |[SAM index structure is inherently static.

— Deletion is not a big problem:
e Simply remove the record from the corresponding data page.

* If the removal makes an overflow data page empty, remove that
overflow data page.

* If the removal makes a primary data page empty, keep it as a
placeholder for future insertions.

 Don’t move records from overflow data pages to primary data
pages even if the removal creates space for doing so.

— Insertion requires more effort:

e If thereis space in the corresponding primary data page, insert
the record there.

e Otherwise, an overflow data page needs to be added.

* Note that the overflow pages will violate the sequential order.
» ISAM indexes degrade after some time.

ISAM Example

e Assume: Each node can hold two entries.

Root g
40
/ : U
h"&
e
T,
20 | | 33 51 | | 63
: | \ | -
! \ .
/ j\ IIIIIII L .lllll.
/ 4 . .
AN gt N
10% | 15 20* ‘ 27" 3 | ar 40* ‘ 46" 51 | 3% 63* | 97*

After Inserting 23%*, 48*, 41*, 42*

Root g
Index 40 .
Pages / T
""'\-\.__H\-.
e =
20 33 51 63
l'-. "'.,
; v 3 T

Primary .-'5-"‘; 1 \ ¢ ! %
Leaf 10° ‘ 15 20° | 21 33 | 37 40* | 46 51* | 55° 3+ | 97
Pages v

|I lI|

v v
Overflow 33" < 48" | 41" € Overflow data

14

... Then Deleting 42*, 51*, 97%

51 appears in index page,

ks but not in the data page.

/ ~ l

210 33 A1 B3
"
l.". .-"III 1 III"-.

| A
10 ‘15 20 27" 37 40 ‘ 46" 55+ 63
v v
73 ‘ 48* | 410
<«—| The empty overflow

data page is removed.

15

ISAM: Overflow Pages & Locking

The non-leaf pages that hold the index data are static;
updates affect only the leaf pages.

» May lead to long overflow chains.

Leave some free space during index creation.
» Typically ~ 20% of each page is left free.

Since ISAM indexes are static, pages need not be locked
during index access.

— Locking can be a serious bottleneck in dynamic tree indexes
(particularly near the root node).

ISAM may be the index of choice for relatively static data.

B*-trees: A Dynamic Index Structure

e The B*-tree is derived from the ISAM index, but is
fully dynamic with respect to updates.

— No overflow chains; B*-trees remain balanced at all times.

— Gracefully adjusts to insertions and deletions.

— Minimum occupancy for all B*-tree nodes (except the
root): 50% (typically: 67 %).
— Original version:

e B-tree: R. Bayer and E. M. McCreight, “Organization and
Maintenance of Large Ordered Indexes”, Acta Informatica, vol. 1,
no. 3, September 1972.

B*-trees: Basics

e B*-trees look like ISAM indexes, where
— leaf nodes are, generally, not in sequential order on disk
— leaves are typically connected to form a doubly-linked list

— leaves may contain actual data (like the ISAM index) or just
references to data pages (e.g., record ids (rids))
* We will assume the latter case, since it is the more common one.

— each B*-tree node contains between d and 2d entries (d is
the order of the B*-tree; the root is the only exception).

v B LW R N] —r

O 00 ~J

10

Searching a B*-tree

Function: search (k)
return tree_search (k, root):

Function: tree_search (k, node)

if node is a leaf then
return node:;

switch k do
case k < kg

L return tree _search (K, p,);
case k; < k < ki,
return tree_search (k, pj);
case K,y < k
return tree_search (k, p);

* Function search (k)
returns a pointer to the
leaf node that contains
potential hits for search
key k.

* Node page layout:

index entry pointer key

—_— e I
a

}D K; P k> Pal - Kn P{
$ ¢

Insertion to a B*-tree: Overview

 The B*-tree needs to remain balanced after every update
(i.e., every root-to-leaf path must be of the same length).

» We cannot create overflow pages.

o Sketch of the insertion procedure for entry <k, p> (key
value k pointing to data page p):
1. Find leaf page n where we would expect the entry for k.

2. If n has enough space to hold the new entry (i.e., at most
2d-1 entries in n), simply insert <k, p> into n.

3. Otherwise, node n must be split into n and n’, and a new
separator has to be inserted into the parent of n.

Splitting happens recursively and may eventually lead to
a split of the root node (increasing the height of the tree).

Insertion to a B*-tree: Example

o
o
Lo
oo
" medeo
N|O O |0
— | O o |~
O™ [~ | O
L | oo o | h
v .
/ \ “ho_g]\e HL 11 r‘redi:?
M N[O |w N[O o |t oo |« O |0 |~ lw|o
IS R RITa R R — |0 O wo o~ C OO | |
| = (uD OO | o | =t | w (WO [~ |00 | CO oM™
I| ! IIII |I f |I i Il I|II |I 1 I|II |I k I'I II
[imd-eﬁ Lo ﬂEdEJ,.:_]. Lol node g I n'EldeE- o] nLr:IE?] node 8

.- - pointers to data pages - - -

* Insert new entry with key 4222.

— Enough space in node 3, simply insert without split.
— Keep entries sorted within nodes.

Insertion to a B*-tree: Example

o
-
Lo
0
_— -~ TTmeden N
~lo|ol | olw
— || GO o —
O | [N b=
w0 |0 ol
/ odEt__ \ “hade 2
_ .;'"f . I — . Y
N O | ™N| O o U o | =H oo | O[O0 [~ oo
I N |W) (Y i [(7) N (O Qo o= o (O ([0 — O
[N Lo < | [|~ O | =t L (L | O [~ [CO [CO o
= | = |=F | < w (WO O (00 |0 eolilve’ 00 (0O (O 00 (0O (O |
node 3 node 4 node g node g node 6 node 7 node 8
| eV 6330 new separator_ |&
o <
nsert key . new entry o
— Must split node 4. NS o P
| Sl2l || IS81S
— New separator goes into node 1 2138 IR =

(including pointer to new page).

node 4

new node g

Insertion to a B*-tree: Example

mlo
S
= | LD
W
o — n_t:-_dE'ﬁ———__________
N - LY C} ____1{:) w
o L o o o |
= — | O ~|O
< | D c | 6o @ | &
de1 \ e 12 Y de 2
\ \
< | oo Nlo mlo o o |t oot olwo|~| | |w|lo
(g T LD (0 |7 LD O 0O [=H oo] [o (O |00 —|
] ai<Hn| | oo = | | || nw|/o| | K@l | |lol&
= |=H = < |=H w3 | w00 O (OO (oD o100 QO 0O 00 O 00 (00 (O
node 3 node 11 node 4 node g node 10 node g node & node 7 node &
. :
After 8180, 8245, insert key 4104. new separator -
— Must split node 3. L |
o from leaf split ©
— Node 1 overflows => split it! N
— New separator goes into root. Q15 B
. . . ™D — [
 Note: Unlike during leaf split, separator Bl gl
r'IC'd'E"I new node 12

key does not remain in inner node.

Insertion to a B*-tree: Root Node Split

Splitting starts at the leaf level and continues

upward as long as index nodes are fully occupied.
Eventually, this can lead to a split of the root node:
— Split like any other inner node.

— Use the separator to create a new root.

The root node is the only node that may have an
occupancy of less than 50 %.

This is the only situation where the tree height
Increases.

L

W 00 —J v B

10

12
13

14
15

Insertion Algorithm

Function: tree_insert (k, rid, node)

if node is a leaf then
L return leaf _insert (k, rid, node):

else

switch k do

case k;

casek < kg,
L {5515? pfr} —|tree_insert (k, rid, ps);

case k,g < k
i (sep, ptr) —|tree_insert (k, rid, p) ;

< k < ki—i—'

| (sep,ptr) —|tree_insert (k, rid, pi) ;

» see tree_search ()

if sep is null then

else

return

return (null, null);

split (sep, ptr, node):

25

—h

W 00 =1 Thuni o

°

—r

WO 00 =1 Th un faows

°

—
—

Function: 1leaf_insert (k, rid, node)

if another entry fits into node then

else

insert (k, rid) into node ;
return (null, null};

allocate new leaf page p;
take { (k. p7), oo (Kagirs Pagn) } = entries from node U { (k, ptr)}
leave entries (ki", pi"), ..., (k,ps) in node;
\» move entries (k. ,pt.,), ... (kg pag) top;

return Ekﬂ'+‘|’ p 2d+1 2d+1

Function: split (k, ptr, node)

if another entry fits into node then

else

insert (k, ptr) into node ;
return (null, null};

allocate new leaf page p;

take { (k7. pi), ..., (kiyys Pagsn) | i= entries from node U { (k, ptr) }
leave entries (K", py"),.... (k],pJ) in node;
move entries (k7 g,pdﬂ} (ki ply) top;
5 rfode; 2d+1 2d+1
return (k7 ., p)

d+1?

26

1 Function: insert (k, rid)

2 (key, ptr) < |tree_insert (k, rid, root);
3 ifkeyis not nullthen

4 allocate new root page r;

5 populate n with

6 P «— root;
7
8
9

ki < key;
p: — ptr;
root «— r:

e jnsert (k, rid) is called from outside.

 Note how leaf node entries point to rids, while inner
nodes contain pointers to other B*-tree nodes.

27

Deletion from a B*-tree

If a node is sufficiently full (i.e., contains at least d+1
entries), we may simply remove the entry from the node.

— Note: Afterwards, inner nodes may contain keys that no longer
exist in the database. This is perfectly legal.

Merge nodes in case of an underflow (i.e., “undo” a split):

olm|o =lle
oiMN|o 0o o
| = (WD < | W
| 0|00 n‘lerge M|
& . |I =
Ny , 4
P o (inner nodes) alalmle
o — o |~ [N
N O ™ N O =™
=H (w2 0 (W (WO

“Pull” separator (i.e., key 6423) into merged node.

Deletion from a B*-tree

e |tis not that easy:

o | oM S
OB A [l] oINS
= | =H [L3 o |00 | W
™ [|0 ? ™ |0 |
ol o redistribution o~ e nlo
C || oo o o | 00
oD [Ll = |
<H LD | LD oo = | W3 w00

 Merging only works if two neighboring nodes were
50% full.

e Otherwise, we have to re-distribute:

— “rotate” entry through parent

B*-trees in Real Systems

e Actual systems often avoid the cost of merging and/or
redistribution, but relax the minimum occupancy rule.

e Example: IBM DB2 UDB

— The “MINPCTUSED”” parameter controls when the system
should try a leaf node merge (“on-line index reorganization”).

— This is particularly easy because of the pointers between
adjacent leaf nodes.

— Inner nodes are never merged (need to do a full table
reorganization for that).

 To improve concurrency, systems sometimes only mark
index entries as deleted and physically remove them
later (e.g., IBM DB2 UDB “type-2 indexes”).

What is stored inside the leaves?

e Basically there are three alternatives:

1. The full data entry k*. Such an index is inherently clustered (e.g.,
ISAM).

2. A <k, rid> pair, where rid is the record id of the data entry.

3. A<k, {rid,, rid,, ...}> pair, where the items in the rid list rid;are
record ids of data entries with search key value k.

2 and 3 are reasons why we want record ids to be stable.

e 2 seems to be the most common one.

B*-trees and Sorting

e A typical situation according to alternative 2 looks as follows:

- index file

[~ J'* data file

32

Clustered B*-trees

e |f the data file was sorted, the scenario would look different:

1 T -
» N + index file
o "‘«.- T A \“r.
—H -, L— —3 =3 —
A \1, .I-.I"a_l.\:';.,‘..... - Ill'a.ll......... (.{... ' -
R LN / | \ *l
' _ ~ 1 -+ datafile

 We call such an index a clustered index.
— Scanning the index now leads to sequential access.
— This is particularly good for range queries.

Index-organized Tables

* Alternative 1 is a special case of a clustered index.
— index file = data file
— Such a file is often called an index-organized table.

e Example: Oracle 8i

CREATE TABLE(..-.

PRIMARY KEY(...))
ORGANIZATION INDEX:

Key Compression: Suffix Truncation

B*-tree fan-out is proportional to the number of index
entries per page, i.e., inversely proportional to the key size.

» Reduce key size, particularly for variable-length strings.

"“| Goofy |__J

[Daisy [5{1_-:;-1;__| | [Mickey I'I:mse| Mini Mouse |

Ty i
|Dag0bert Duck| | |Daisy Duck| | |Gumfy| | |Hickey House| || Mini Hﬂuse|

Suffix truncation: Make separator keys only as long as

necessary:
|Dagmbert Duckl | |Daisy ﬁuck| | |G00fyw | |Mickey ﬁﬂuse| || Mini ﬁeuae|

Note that separators need not be actual data values.

Key Compression: Prefix Truncation

* Keys within a node often share a common prefix.

| Mic | Min | _::E
. --"-_----- ."I -_---_"--___ _____--"_-_ ,."' T —
| G:mf:;' | | |I-Iic1-:e:,' I"'[EJ'LIEE| | | Mini Mouse | | | Goofy | | |I'Iicl~:e:,' Mouse | | | Mini Mouse | |

e Prefix truncation:
— Store common prefix only once (e.g., as “k,”).
— Keys have become highly discriminative now.

R. Bayer, K. Unterauer, “Prefix B-Trees”, ACM TODS 2(1), March 1977.
B. Bhattacharjee et al., “Efficient Index Compression in DB2 LUW”, VLDB’09.

Composite Keys

e B*-trees can in theory be used to index everything
with a defined total order such as:

— integers, strings, dates, etc., and
— concatenations thereof (based on lexicographical order)
e Example: In most SQL dialects:

CREATE INDEX ON TABLE CUSTOMERS (LASTNAME, FIRSTNAME) ; |

* A useful application are, e.g., partitioned B-trees:

— Leading index attributes effectively partition the resulting
B*-tree.

G. Graefe, “Sorting and Indexing with Partitioned B-Trees”, CIDR’03.

Bulk-Loading B*-trees

 Building a B+-tree is particularly easy when the input
is sorted.

___________|::|
_--.-------E:lﬁ:.:______________ |::| .
i e ‘j|\|\‘| || |’”fj||\'| || |""{fl||\“'| || r*f .

* Build B+-tree bottom-up and left-to-right.

* Create a parent for every 2d+1 un-parented nodes.

— Actual implementations typically leave some space for
future updates (e.g., DB2’s “PCTFREE"” parameter).

Stars, Pluses, ...

In the foregoing we described the B*-tree.

Bayer and McCreight originally proposed the B-tree:
— Inner nodes contain data entries, too.

There is also a B*-tree:
— Keep non-root nodes at least 2/3 full (instead of 1/2).
— Need to redistribute on inserts to achieve this
=> Whenever two nodes are full, split them into three.

Most people say “B-tree” and mean any of these
variations. Real systems typically implement B*-trees.

“B-trees” are also used outside the database domain,
e.g., in modern file systems (ReiserFS, HFS, NTFS, ...).

Hash-based Indexing

e B*-trees are by far the predominant type of indices in
databases. An alternative is hash-based indexing.

 Hash indexes can only be used to answer equality
selection queries (not range selection queries).

* Like in tree-based indexing, static and dynamic hashing
techniques exist; their trade-offs are similar to ISAM vs.
B*-trees.

Hash-based Indexing

bucket o
4 bucket1 , .
key 27
— h 5
h : dom(key) — [0..n —1] bucket n —
prirﬁar}r overflow
bucket pages pages

 Records in a file are grouped into buckets.

* A bucket consists of a primary page and possibly
overflow pages linked in a chain.

e Hash function:

— Given a the search key of a record, returns the corresponding
bucket number that contains that record.

— Then we search the record within that bucket.

Hash Function

A good hash function distributes values in the
domain of the search key uniformly over the
collection of buckets.

e Given N buckets 0 .. N-1, h(value) = (a*value + b)
works well.

— h(value) mod N gives the bucket number.
— a and b are constants to be tuned.

Static Hashing

e Number of primary pages is fixed.

 Primary pages are allocated sequentially and are never
de-allocated. Use overflow pages if need more pages.

 h(k) mod N gives the bucket to which the data entry

with search key k belongs. (N: number of buckets)
hikev) mod N 0 7 R
24 g /_(1 t+—» 1, ..

]:{'E"j.-' TN ##f# — . - -

— K For primary pages:

AN e Read =1 disk I/O

1“\ * Insert, Delete = 2 disk |/Os
NN I o ... Whatabout the overflow pages?

Primary bucket pages Overflow pages

Problems with Static Hashing

e Number of buckets n is fixed.
— How to choose n?
— Many deletions => space is wasted

— Many insertions => long overflow chains that degrade
search performance

e Static hashing has similar problems and advantages as
in ISAM.

 Rehashing solution:

— Periodically rehash the whole file to restore the ideal (i.e.,
no overflow chains and 80% occupancy)

— Takes long and makes the index unusable during rehashing.

Dynamic Hashing

To deal with the problems of static hashing, database
systems use dynamic hashing techniques:

— Extendible hashing

— Linear hashing

Note that: Few real systems support true hash indexes
(such as PostgreSQL).
More popular uses of hashing are:

— support for B*-trees over hash values (e.g., SQL Server)

— the use of hashing during query processing => hash join

Extendible Hashing: The Idea

e Overflows occur when bucket (primary page) becomes
full. Why not re-organize the file by doubling the number
of buckets?

— Reading and writing all pages is expensive!

* |dea: Use a directory of pointers to buckets; double the
number of buckets by doubling the directory and
splitting just the bucket that overflowed.

— Directory is much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split.

— No overflow pages!
— Trick lies in how the hash function is adjusted.

 The directory is an array of size 4.

Extendible Hashing: An Example

Search:

.
LOCAL DEPTH

— To find the bucket for search key rjiceaL tEPTH

take the last “global depth”
number of bits of h(r):

— h(r) =5 =binary 101 => The data
entry for ris in the bucket pointed
to by 01.

Insertion:
— If the bucket is full, split it.

— If “necessary”, double the
directory.

="

1
10

11

DIRECTORY

T —

Ng

32*:. dataentryr
with h(r)=32

1

4
4* 12* 31* 16*

-
-

1* &= 11* 13*

Ft

10*

15= 7= 19=

DATAPAGES

Bucket A

Bucket B

Bucket C

Bucket D

Extendible Hashing: Directory Doubling

Insert 20*: h(r) = 20 = binary 10100

P E oEe b
LOCAL DEPTH- 774 Bucket A LOCAL DEPTH—Z—M 3
GLOEAL DEPTH 32=167 CLOBAL DEPTH 32169 Bucket A
r P
: 3 T
s + =& #1314+ Bucket B —— A
Dﬂ _'_:_,.-"'-f:' 1 ™ 11 13‘ [H:“} .-"'"-.. 11-.- 5:- :1:15: ButkEtB
01 - ; 001
10 h""--,__ R - k-
1 ~ 700 Bucket C 010 A P
011 10* Bucket C
I 1[”] "'\/%
DIRECTORY N\ f=—l————7 Bucket D 01 | 7\ 2
- 110 3154 7% 19* | Bucket D
_ 111
s 14z Aans Bucket A2 .
47124200 | it image DIRECTORY Y 12 1220 | Bucket A2
of Bucket A) “splitimage’
of Bucket A)

48

Extendible Hashing: Directory Doubling

e 20 =binary 10100. The last 2 bits (00) tell us that r belongs
in bucket A or A2. The last 3 bits are needed to tell which.

— Global depth of directory = maximum number of bits needed to
tell which bucket an entry belongs to.

— Local depth of a bucket = number of bits used to determine if an
entry belongs to a given bucket.

* When does a bucket split cause directory doubling?
— Before the insertion and split, local depth = global depth.
— After the insertion and split, local depth > global depth.

— Directory is doubled by copying it over and fixing the pointer to
the split image page.

— After the doubling, global depth = local depth.

Extendible Hashing: Directory Doubling

* Using the least significant bits enables efficient doubling
via copying of directory.

6=110 A 6=110 3
000 000
001 100
; iy
....... I:I]-D — I:I]-D
0 6* 01 100 0 10 001
— .
10| 6 ! 01
1 101 16 =z 101
11 110| 6* 11 011 ;2{
111 111

Least Significant VS. Most Significant

Extendible Hashing: Other Issues

e Efficiency:

— If the directory fits in memory, an equality selection query
can be answered with 1 disk I/O. Otherwise, 2 disk I/Os are
needed.

e Deletions:

— If removal of a data entry makes a bucket empty, then that
bucket can be merged with its “split image”.

— Merging buckets decreases the local depth.

— |If each directory element points to the same bucket as its
split image, then we can halve the directory.

Linear Hashing: The Idea

e Linear Hashing handles the problem of long overflow chains
without using a directory.

* ldea: Use a family of hash functions h,, h,, h,, ..., such that
— h,,,’s range is twice that of h..
— First, choose an initial hash function h and number of buckets N.
— Then, h,(key) = h(key) mod (2'N).
— If N =29, for some dO, h. consists of applying h and looking at the last di
bits, where di = d0 + .
— Example: Assume N =32 =2>. Then:
e d0=5 (i.e., look at the last 5 bits)
h,=h mod (1*32) (i.e., buckets in range 0 to 31)
dl=d0+1=5+1=6 (i.e., look at the last 6 bits)
h,=h mod (2*32) (i.e., buckets in range 0 to 63)
e ..andsoon.

Linear Hashing: Rounds of Splitting

e Directory is avoided in Linear Hashing by using overflow
pages, and choosing bucket to split in a round-robin fashion.

— Splitting proceeds in “rounds”. A round ends when all N, initial (for
round R) buckets are split.

— Current round number is “Level”. During the current round, only
h, ., andh,,..;arein use.

— Search: To find bucket for a data entry r, find h /(1)
e Assume: Buckets O to Next-1 have been split; Next to N, yet to be split.
e If h,,/(r)inrange “Next to N;”, r belongs here.

e Else, r could belong to bucket h,,, . (r) or bucket h,,,.(r) + Ng;
must apply h,.,...;(r) to find out.

Linear Hashing: Insertion

* Insertion: Find bucket by applying h,,,., and h,_, ;.
— If bucket to insert into is full:

e Add overflow page and insert data entry.
e Split Next bucket and increment Next.

e Since buckets are split round-robin, long overflow
chains don’t develop!

* Similar to directory doubling in Extendible Hashing.

Linear Hashing: An Example

* On split, h,,,..,; is used to re-distribute entries.

Leve
Level=0, N=4 Level=0
h h PRIMARY h h PRIMARY OVERFLOW
1 0 | Next=n PAGES 1 0 PAGES PAGES
N 3217447 367 327
000 00 0o 00
o Next=1 —
Tacdex Data entry r \ Tacdes
001 | 01 P7|25757] | with h(r)=5 001 | 01 il el
010 10 147189107307, Primary 010 10 144 187109307
— bucket page —-
4354 T= b E 57 ?:l: £ e
011 11 31733 11 011 1 3193 11 . 43
(Ilis info {The actmal contents -
15 for illustration aof the linear hashed 100 00 447 367

only!) file)

55

Summary of Hash-based Indexing

 Hash-based indexes are best for equality selection
queries; they cannot support range selection queries.

e Static Hashing can lead to long overflow chains.

 Dynamic Hashing: Extendible or Linear.

— Extendible Hashing avoids overflow pages by splitting a full
bucket when a new data entry is to be added to it.
e Directory to keep track of buckets, doubles periodically.

— Linear Hashing avoids directory by splitting buckets round-

robin and using overflow pages.
e Overflow pages are not likely to be long (usually at most 2).

Indexing Recap
Indexed Sequential Access Method (ISAM)

— A static, tree-based index structure.

B*-trees

— The database index structure; indexing based on any kind of
(linear) order; adapts dynamically to inserts and deletes; low
tree heights (~3-4) guarantee fast lookups.

Clustered vs. Unclustered Indexes

— An index is clustered if its underlying data pages are ordered
according to the index; fast sequential access for clustered B*-
trees.

Hash-Based Indexes

— Extendible hashing and linear hashing adapt dynamically to the
number of data entries.

	Systems Infrastructure for Data Science
	Lecture II: Indexing
	Indexing
	Database File Organization and Indexing
	File Organization
	Heap Files?
	Sorted Files?
	Are Sorted Files good enough?
	Tree-based Indexing
	ISAM: Indexed Sequential Access Method
	ISAM Index Structure
	Updates on ISAM Index Structure
	ISAM Example
	After Inserting 23*, 48*, 41*, 42*
	… Then Deleting 42*, 51*, 97*
	ISAM: Overflow Pages & Locking
	B+-trees: A Dynamic Index Structure
	B+-trees: Basics
	Searching a B+-tree
	Insertion to a B+-tree: Overview
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Example
	Insertion to a B+-tree: Root Node Split
	Insertion Algorithm
	Foliennummer 26
	Foliennummer 27
	Deletion from a B+-tree
	Deletion from a B+-tree
	B+-trees in Real Systems
	What is stored inside the leaves?
	B+-trees and Sorting
	Clustered B+-trees
	Index-organized Tables
	Key Compression: Suffix Truncation
	Key Compression: Prefix Truncation
	Composite Keys
	Bulk-Loading B+-trees
	Stars, Pluses, …
	Hash-based Indexing
	Hash-based Indexing
	Hash Function
	Static Hashing
	Problems with Static Hashing
	Dynamic Hashing
	Extendible Hashing: The Idea
	Extendible Hashing: An Example
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Directory Doubling
	Extendible Hashing: Other Issues
	Linear Hashing: The Idea
	Linear Hashing: Rounds of Splitting
	Linear Hashing: Insertion
	Linear Hashing: An Example
	Summary of Hash-based Indexing
	Indexing Recap

