
Systems Infrastructure for Data
Science

Web Science Group
Uni Freiburg
WS 2012/13

Lecture I: Storage

Storage

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 3

Pa
rt

 I
 o

f t
hi

s c
ou

rs
e

The Physical Layer

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 4

The Memory Hierarchy

• Fast, but expensive and small memory close to CPU
• Larger, slower memory at the periphery
• We’ll try to hide latency by using the fast memory as a

cache.
Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 5

Observations and Trends

• For which gaps were systems designed
traditionally?

• Within the same technology:
– Storages capacities grow fastest
– Transfer speeds grow moderately
– Latencies only see minimal changes

• Between the level
– Widening latency gap

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 6

Magnetic Disks

• A stepper motor positions an array of
disk heads on the requested track.

• Platters (disks) steadily rotate.
• Disks are managed in blocks: the system

reads/writes data one block at a time.
Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 7

Access Time

• This design has implications on the access time to
read/write a given block:

 1. Move disk arms to desired track (seek time ts).
 2. Wait for desired block to rotate under disk

 head (rotational delay tr).
 3. Read/write data (transfer time ttr).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 8

access time t = ts + tr + ttr

Example
Notebook drive Hitachi TravelStar 7K200

• 4 heads, 2 disks, 512 bytes/sector, 200 GB capacity
• average seek time = 10 ms
• rotational speed = 7200 rpm (revolutions per minute)
• transfer rate = ≈ 50 MB/s
What is the access time to read an 8 KB data block?

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 9

t = ts + tr + ttr
 ts = 10 ms
 tr = (60,000/7200)/2 = 4.17 ms
 ttr = (8/50,000)*1,000 = 0.16 ms
t = 10 + 4.17 + 0.16 = 14.33 ms

max = 60,000/7200 ms
avg = max/2

Sequential vs. Random Access
What is the access time to read 1000 blocks of size 8 KB?
• Random access:
 trnd = 1000 * t
 = 1000 * (ts + tr + ttr)
 = 1000 * (10 + 4.17 + 0.16) = 1000 * 14.33 = 14330 ms
• Sequential access:
 tseq = ts + tr + 1000 * ttr + N * ttrack-to-track seek time
 = ts + tr + 1000 * 0.16 ms + (16 * 1000)/63 * 1 ms
 = 10 ms + 4.17 ms + 160 ms + 254 ms ≈ 428 ms
 // N: number of tracks
 // TravelStar 7K200: There are 63 sectors per track.
 Each 8 KB block occupies 16 sectors.
 ttrack-to-track seek time = 1 ms

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 10

Sequential vs. Random Access
What is the access time to read 1000 blocks of size 8 KB?
• Random access:
 trnd = 1000 * t
 = 1000 * (ts + tr + ttr)
 = 1000 * (10 + 4.17 + 0.16) = 1000 * 14.33 = 14330 ms
• Sequential access:
 tseq = ts + tr + 1000 * ttr + N * ttrack-to-track seek time
 = ts + tr + 1000 * 0.16 ms + (16 * 1000)/63 * 1 ms
 = 10 ms + 4.17 ms + 160 ms + 254 ms ≈ 428 ms
 // N: number of tracks
 // TravelStar 7K200: There are 63 sectors per track.
 Each 8 KB block occupies 16 sectors.
 ttrack-to-track seek time = 1 ms

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 11

Sequential I/O is much faster than random I/O.
Avoid random I/O whenever possible.

Performance Tricks
• System builders play a number of tricks to improve

performance:

– Track skewing: Align sector 0 of each
 track to avoid rotational delay during
 sequential scans.

– Request scheduling: If multiple requests have to be served,

choose the one that requires the smallest arm movement
 (SPTF: Shortest Positioning Time First).

– Zoning: Outer tracks are longer than
 the inner ones. Therefore, divide outer
 tracks into more sectors than inners.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 12

Evolution of Hard Disk Technology

• Disk latencies have only marginally improved
over the last years (≈ 10% per year).

• But:
– Throughput (i.e., transfer rates) improve by ≈ 50%

per year.
– Hard disk capacity grows by ≈ 50% every year.

• Therefore:
– Random access cost hurts even more as time

progresses.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 13

Ways to Improve I/O Performance
• The latency penalty is hard to avoid.
• But:

– Throughput can be increased rather easily by
exploiting parallelism.

– Idea: Use multiple disks and access them in parallel.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 14

 TPC-C: An industry benchmark for OLTP
 The #1 system in 2008 (an IBM DB2 9.5 database on AIX) uses:

• 10,992 disk drives (73.4 GB each, 15,000 rpm) (!)
• connected with 68 x 4 Gbit Fibre Channel adapters,
• yielding 6M transactions per minute.

Disk Mirroring
• Replicate data onto multiple disks:

 I/O parallelism only for reads (writes must be sequential to keep
consistency).

 Improved failure tolerance (can survive one disk failure).
 No parity (no extra information kept to recover from disk failures).
 This is also known as RAID 1 ("mirroring without parity”).
 (RAID = Redundant Array of Inexpensive Disks)
Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 15

Disk Striping
• Distribute data into equal-size partitions over multiple disks:

 Full I/O parallelism (both reads and writes).
 No parity.
 High failure risk (here: 3 times risk of single disk failure)!
 This is also known as RAID 0 (“striping without parity”).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 16

Disk Striping with Parity
• Distribute data and parity information over disks:

 High I/O parallelism.
 Fault tolerance: one disk can fail without data loss.
 This is also known as RAID 5 (“striping with distributed parity”).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 17

Other RAID Levels

• RAID 0: block-level striping without parity or mirroring
• RAID 1: mirroring without parity or striping
• RAID 2: bit-level striping with dedicated parity
• RAID 3: byte-level striping with dedicated parity
• RAID 4: block-level striping with dedicated parity
• RAID 5: block-level striping with distributed parity
• RAID 6: block-level striping with double distributed parity

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 18

Modern Storage Alternatives

• (Flash-based) Solid-State Disk (SSD)
• Phase-Change Memory (PCM)
• Storage-Area Network (SAN)
• Cloud-based Storage (e.g., Amazon S3)

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 19

Solid-State Disks
• Solid-State Disks (SSDs), mostly based on flash memory

chips, have emerged as an alternative to conventional
hard disks.
– SSDs provide very low-latency random
 read access.
– Random writes, however, are significantly
 slower than on traditional magnetic drives.

• Pages have to be erased before they can be updated.
• Once pages have been erased, sequentially writing them is almost as fast as

reading.

– Adapting databases to these characteristics is a current
research topic.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 20

 Koltsidas and Viglas, “Flashing up the Storage Layer”, VLDB Conference, 2008.

Phase-Change Memory

• More recently, Phase-Change Memory (PCM)
has been emerging as an alternative to flash.

• It incurs lower read and write latency compared
to both flash memory and magnetic disks.

• Currently mostly used in mobile devices; is
expected to become more common in the near
future.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 21

 Chen, Gibbons, Nath, “Rethinking Database Algorithms for Phase Change Memory”,
 CIDR Conference, 2011.

Network-based Storage
• The network is not a bottleneck any more:

– Hard disk: 150 MB/s
– Serial ATA: 600 MB/s
 Ultra-640 SCSI: 640 MB/s
– 10 gigabit Ethernet: 1,250 MB/s (latency ~ μs)
 Infiniband QDR: 12,000 MB/s (latency ~ μs)
– For comparison:
 PC2-5300 DDR2-SDRAM (dual channel) = 10.6 GB/s
 PC3-12800 DDR3-SDRAM (dual channel) = 25.6 GB/s

Why not use the network for database storage?

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 22

Storage Area Network (SAN)

• Block-based network access to storage
– Seen as logical disks (“Give me block 4711 from disk 42.”)
– Unlike network file systems (e.g., NFS)

• SAN storage devices typically abstract from RAID or
physical disks, and present logical drives to the DBMS.
– Hardware acceleration and simplified maintainability

• Typically local networks with multiple servers and
storage resources participating
– Failure tolerance and increased flexibility

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 23

Grid or Cloud Storage
• Some big enterprises employ clusters with thousands of

commodity PCs (e.g., Google, Amazon):
– system cost ↔ reliability and performance
– use massive replication for data storage

• Spare CPU cycles and disk space can be sold as a service.
• Amazon’s “Elastic Computing Cloud (EC2)”

– Use Amazon’s compute cluster by the hour (~ 10 cents/hour).
• Amazon’s “Simple Storage Systems (S3)”

– “Infinite” store for objects between 1 Byte and 5 GB in size, with
a simple key → value interface.

– Latency: 100 ms to 1 s (not impacted by load)
– Pricing ≈ disk drives (but additional cost for access)

 Build a database on S3? (Brantner et al., SIGMOD’08 Conference)

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 24

Managing Space

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 25

Managing Space
• The disk space manager

– abstracts from the gory details of the underlying
storage

– provides the concept of a page (typically 4–64 KB) as a
unit of storage to the remaining system components

– maintains the mapping
 page number → physical location

 where a physical location could be, e.g.,
• an OS file name and an offset within that file, or
• head, sector, and track of a hard drive, or
• tape number and offset for data stored in a tape library.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 26

Empty Pages
• The disk space manager also keeps track of

used/free blocks.
 1. Maintain a linked list of free pages

– When a page is no longer needed, add it to the list.

 2. Maintain a bitmap with one bit for each page
– Toggle bit n when page n is (de-)allocated.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 27

Buffer Manager

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 28

Buffer Manager

• The buffer manager
– mediates between external

storage and main memory
– manages a designated main

memory area, the buffer pool
for this task.

• Disk pages are brought into
memory as needed and
loaded into memory frames.

• A replacement policy
decides which page to evict
when the buffer is full.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 29

Interface to the Buffer Manager

• Higher-level code requests (“pins”) pages from the buffer
manager and releases (“unpins”) pages after use.

 pin(pageno)
 Request page number pageno from the buffer manager,
 load it into memory if necessary. Returns a reference to
 the frame containing pageno.

 unpin(pageno,dirty)
 Release page number pageno, making it a candidate for
 eviction. Must set dirty=true if the page was modified.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 30

Implementation of pin()

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 31

Implementation of unpin()

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 32

Page Replacement

• Only frames with pinCount=0 can be chosen for
replacement.

• If no such frames, the buffer manager has to wait
until there is one.

• If many such frames, one is chosen based on the
buffer manager’s replacement policy.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 33

Page Replacement Policies
• The effectiveness of the buffer manager’s caching

functionality can depend on the replacement
policy it uses, e.g.,

• Least Recently Used (LRU)
– Evict the page whose latest unpin() is the longest ago.

• Most Recently Used (MRU)
– Evict the page that has been unpinned the most recently.

• Random
– Pick a victim randomly.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 34

Buffer Management in Reality
• Prefetching

– Buffer managers try to anticipate page requests to overlap
CPU and I/O operations.

• Speculative prefetching: Assume sequential scan and
automatically read ahead.

• Prefetch lists: Some database algorithms can instruct the buffer
manager with a list of pages to prefetch.

• Page fixing/hating
– Higher-level code may request to fix a page if it may be

useful in the near future (e.g., index pages).
– Likewise, an operator that hates a page won’t access it any

time soon (e.g., table pages in a sequential scan).
• Partitioned buffer pools

– E.g., separate pools for indices and tables.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 35

Database Systems vs. Operating Systems
• Didn’t we just re-invent the operating system?

• Yes,

– disk space management and buffer management very much
look like file management and virtual memory in OSs.

• But,

– a DBMS may be much more aware of the access patterns of
certain operators (prefetching, page fixing/hating),

– concurrency control often calls for a defined order of write
operations,

– technical reasons may make OS tools unsuitable for a
database (e.g., file size limitation, platform independence).

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 36

Database Systems vs. Operating Systems

• In fact, DBMS and OS systems sometimes interfere.
– Operating system and buffer manager
 effectively buffer the same data twice.
– Things get really bad if parts of the
 DBMS buffer get swapped out to disk by
 OS VM manager.
– Similar problems: scheduling

(Linux 3.6 vs. Postgres)
– Classical approach:

databases try to turn off OS
 functionality as much as possible.
– Ongoing Research:

New interfaces, cooperation, e.g. COD at CIDR 2013

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 37

Files and Records

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 38

Database Files
• So far we have talked about pages. Their management is

oblivious with respect to their actual content.
• On the conceptual level, a DBMS manages tables of tuples and

indices (among others).
• Such tables are implemented as files of records:

– A file consists of one or more pages.
– Each page contains one or more records.
– Each record corresponds to one tuple.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 39

Heap Files
• The most important type of files in a database is the heap file.
 It stores records in no particular order (in line with, e.g., SQL).

 + easy to implement
 – most pages will end up in free page list
 – might have to search many pages to place a (large) record

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 40

Heap Files

• Use as space map with information about free pages
– granularity for trade-off between space and accuracy
 (ranges from open/closed bit to exact information)

+ free space search more efficient
– small memory overhead to host directory

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 41

Free Space Management
Which page to pick for the insertion of a new record?

• Append Only

– Always insert into the last page. Otherwise, create a new page.
• Best Fit

– Reduces fragmentation, but requires searching the entire space map
for each insert.

• First Fit
– Search from the beginning, take first page with enough space.
 (These pages quickly fill up, and we waste a lot of search effort in

first pages afterwards.)
• Next Fit

– Maintain a cursor and continue searching where the search stopped
last time.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 42

Free Space Witnesses
• We can accelerate the search by remembering witnesses:

– Classify pages into buckets, e.g., “75 % – 100% full”,
 “50 % – 75% full”, “25 % – 50% full”, and “0 % – 25% full”.
– For each bucket, remember some witness pages.
– Do a regular best/first/next fit search, only if no witness is

recorded for the specific bucket.
– Populate witness information, e.g., as a side effect when

searching for a best/first/next fit page.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 43

Inside a Page

• record identifier (rid):
<pageno, slotno>

• record position (within page):
slotno x bytes per slot

• Tuple deletion?
– record id shouldn’t change
– slot directory (bitmap)

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 44

Inside a Page: Variable-sized Fields

• Variable-sized fields moved
to end of each record.
– Placeholder points to

location.
• Slot directory points to start

of each record.
• Records can move on page.

– E.g., if field size changes.
• Create “forward address” if
 record won’t fit on page.

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 45

Variants of page layout
• Row-wise

• Column-wise

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 46

(F
ig

ur
es

 b
y

Je
ns

 T
eu

bn
er

, E
TH

)

Row Stores vs. Column Stores

• Which one is better?
• For what?
• Some ideas for evaluation:

– How many attributes to tuples have? How many
of them are read in a typical query

– How would they deal with different levels of the
storage hierarchy?

– What happens on an update?
– Which one would compress better?

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 47

Summary

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 48

Pa
rt

 I
 o

f t
hi

s c
ou

rs
e

	Systems Infrastructure for Data Science
	Lecture I: Storage
	Storage
	The Physical Layer
	The Memory Hierarchy
	Observations and Trends
	Magnetic Disks
	Access Time
	Example�Notebook drive Hitachi TravelStar 7K200
	Sequential vs. Random Access
	Sequential vs. Random Access
	Performance Tricks
	Evolution of Hard Disk Technology
	Ways to Improve I/O Performance
	Disk Mirroring
	Disk Striping
	Disk Striping with Parity
	Other RAID Levels
	Modern Storage Alternatives
	Solid-State Disks
	Phase-Change Memory
	Network-based Storage
	Storage Area Network (SAN)
	Grid or Cloud Storage
	Managing Space
	Managing Space
	Empty Pages
	Buffer Manager
	Buffer Manager
	Interface to the Buffer Manager
	Implementation of pin()
	Implementation of unpin()
	Page Replacement
	Page Replacement Policies
	Buffer Management in Reality
	Database Systems vs. Operating Systems
	Database Systems vs. Operating Systems
	Files and Records
	Database Files
	Heap Files
	Heap Files
	Free Space Management
	Free Space Witnesses
	Inside a Page
	Inside a Page: Variable-sized Fields
	Variants of page layout
	Row Stores vs. Column Stores
	Summary

