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The Physical Layer 
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The Memory Hierarchy 

• Fast, but expensive and small memory close to CPU 
• Larger, slower memory at the periphery 
• We’ll try to hide latency by using the fast memory as a 

cache. 
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Observations and Trends 

• For which gaps were systems designed 
traditionally? 

• Within the same technology: 
– Storages capacities grow fastest 
– Transfer speeds grow moderately 
– Latencies only see minimal changes 

• Between the level 
– Widening latency gap 
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Magnetic Disks 

• A stepper motor positions an array of 
disk heads on the requested track. 

• Platters (disks) steadily rotate. 
• Disks are managed in blocks: the system 

reads/writes data one block at a time. 
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Access Time 

• This design has implications on the access time to 
read/write a given block: 

  1. Move disk arms to desired track (seek time ts). 
  2. Wait for desired block to rotate under disk 

     head (rotational delay tr). 
  3. Read/write data (transfer time ttr). 

   

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 8 

access time t = ts + tr + ttr 



Example 
Notebook drive Hitachi TravelStar 7K200 

• 4 heads, 2 disks, 512 bytes/sector, 200 GB capacity 
• average seek time = 10 ms 
• rotational speed = 7200 rpm (revolutions per minute) 
• transfer rate = ≈ 50 MB/s 
What is the access time to read an 8 KB data block? 
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t = ts + tr + ttr 
     ts = 10 ms 
     tr = (60,000/7200)/2 = 4.17 ms 
     ttr = (8/50,000)*1,000 = 0.16 ms 
t = 10 + 4.17 + 0.16 = 14.33 ms 

max = 60,000/7200 ms 
avg  = max/2 



Sequential vs. Random Access 
What is the access time to read 1000 blocks of size 8 KB? 
• Random access: 
  trnd = 1000 * t 
         = 1000 * (ts + tr + ttr) 
         = 1000 * (10 + 4.17 + 0.16) = 1000 * 14.33 = 14330 ms 
• Sequential access: 
  tseq = ts + tr + 1000 * ttr + N * ttrack-to-track seek time 
         = ts + tr + 1000 * 0.16 ms + (16 * 1000)/63 * 1 ms 
         = 10 ms + 4.17 ms + 160 ms + 254 ms ≈ 428 ms 
  // N: number of tracks 
  // TravelStar 7K200: There are 63 sectors per track. 
            Each 8 KB block occupies 16 sectors. 
             ttrack-to-track seek time = 1 ms 
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Sequential I/O is much faster than random I/O. 
Avoid random I/O whenever possible. 

 



Performance Tricks 
• System builders play a number of tricks to improve 

performance: 
 

– Track skewing: Align sector 0 of each 
 track to avoid rotational delay during 
 sequential scans. 

 
– Request scheduling: If multiple requests have to be served, 

choose the one that requires the smallest arm movement 
 (SPTF: Shortest Positioning Time First). 

 
– Zoning: Outer tracks are longer than 
 the inner ones. Therefore, divide outer 
 tracks into more sectors than inners. 
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Evolution of Hard Disk Technology 

• Disk latencies have only marginally improved 
over the last years (≈ 10% per year). 

• But: 
– Throughput (i.e., transfer rates) improve by ≈ 50% 

per year. 
– Hard disk capacity grows by ≈ 50% every year. 

• Therefore: 
– Random access cost hurts even more as time 

progresses. 
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Ways to Improve I/O Performance 
• The latency penalty is hard to avoid. 
• But: 

– Throughput can be increased rather easily by 
exploiting parallelism. 

– Idea: Use multiple disks and access them in parallel. 
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 TPC-C: An industry benchmark for OLTP 
 The #1 system in 2008 (an IBM DB2 9.5 database on AIX) uses: 

• 10,992 disk drives (73.4 GB each, 15,000 rpm) (!) 
• connected with 68 x 4 Gbit Fibre Channel adapters, 
• yielding 6M transactions per minute. 



Disk Mirroring 
• Replicate data onto multiple disks: 

 
 
 
 
 
 
 
 

 I/O parallelism only for reads (writes must be sequential to keep 
consistency). 

 Improved failure tolerance (can survive one disk failure). 
 No parity (no extra information kept to recover from disk failures). 
 This is also known as RAID 1 ("mirroring without parity”). 
 (RAID = Redundant Array of Inexpensive Disks) 
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Disk Striping 
• Distribute data into equal-size partitions over multiple disks: 

 
 
 
 
 
 

 Full I/O parallelism (both reads and writes). 
 No parity. 
 High failure risk (here: 3 times risk of single disk failure)! 
 This is also known as RAID 0 (“striping without parity”). 
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Disk Striping with Parity 
• Distribute data and parity information over disks: 

 
 
 
 
 
 

 High I/O parallelism. 
 Fault tolerance: one disk can fail without data loss. 
 This is also known as RAID 5 (“striping with distributed parity”).  
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Other RAID Levels 

• RAID 0: block-level striping without parity or mirroring 
• RAID 1: mirroring without parity or striping 
• RAID 2: bit-level striping with dedicated parity 
• RAID 3: byte-level striping with dedicated parity 
• RAID 4: block-level striping with dedicated parity 
• RAID 5: block-level striping with distributed parity 
• RAID 6: block-level striping with double distributed parity 
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Modern Storage Alternatives 

• (Flash-based) Solid-State Disk (SSD) 
• Phase-Change Memory (PCM) 
• Storage-Area Network (SAN) 
• Cloud-based Storage (e.g., Amazon S3) 
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Solid-State Disks 
• Solid-State Disks (SSDs), mostly based on flash memory 

chips, have emerged as an alternative to conventional 
hard disks. 
– SSDs provide very low-latency random 
 read access. 
– Random writes, however, are significantly 
 slower than on traditional magnetic drives. 

• Pages have to be erased before they can be updated. 
• Once pages have been erased, sequentially writing them is almost as fast as 

reading. 

– Adapting databases to these characteristics is a current 
research topic. 
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 Koltsidas and Viglas, “Flashing up the Storage Layer”, VLDB Conference, 2008. 



Phase-Change Memory 

• More recently, Phase-Change Memory (PCM) 
has been emerging as an alternative to flash. 

• It incurs lower read and write latency compared 
to both flash memory and magnetic disks. 

• Currently mostly used in mobile devices; is 
expected to become more common in the near 
future. 
 

Uni Freiburg, WS 2012/13 Systems Infrastructure for Data Science 21 

 Chen, Gibbons, Nath, “Rethinking Database Algorithms for Phase Change Memory”, 
     CIDR Conference, 2011. 



Network-based Storage 
• The network is not a bottleneck any more: 

– Hard disk: 150 MB/s 
– Serial ATA: 600 MB/s 
 Ultra-640 SCSI: 640 MB/s 
– 10 gigabit Ethernet: 1,250 MB/s (latency ~ μs) 
 Infiniband QDR: 12,000 MB/s (latency ~ μs) 
– For comparison: 
 PC2-5300 DDR2-SDRAM (dual channel) = 10.6 GB/s 
 PC3-12800 DDR3-SDRAM (dual channel) = 25.6 GB/s 
 

Why not use the network for database storage? 
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Storage Area Network (SAN) 

• Block-based network access to storage 
– Seen as logical disks (“Give me block 4711 from disk 42.”) 
– Unlike network file systems (e.g., NFS) 

• SAN storage devices typically abstract from RAID or 
physical disks, and present logical drives to the DBMS. 
– Hardware acceleration and simplified maintainability 

• Typically local networks with multiple servers and 
storage resources participating 
– Failure tolerance and increased flexibility 
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Grid or Cloud Storage 
• Some big enterprises employ clusters with thousands of 

commodity PCs (e.g., Google, Amazon): 
– system cost ↔ reliability and performance 
– use massive replication for data storage 

• Spare CPU cycles and disk space can be sold as a service. 
• Amazon’s “Elastic Computing Cloud (EC2)” 

– Use Amazon’s compute cluster by the hour (~ 10 cents/hour). 
• Amazon’s “Simple Storage Systems (S3)” 

– “Infinite” store for objects between 1 Byte and 5 GB in size, with 
a simple key → value interface. 

– Latency: 100 ms to 1 s (not impacted by load) 
– Pricing ≈ disk drives (but additional cost for access) 

 
 Build a database on S3? (Brantner et al., SIGMOD’08 Conference) 
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Managing Space 
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Managing Space 
• The disk space manager 

– abstracts from the gory details of the underlying 
storage 

– provides the concept of a page (typically 4–64 KB) as a 
unit of storage to the remaining system components 

– maintains the mapping 
   page number → physical location 

 where a physical location could be, e.g., 
• an OS file name and an offset within that file, or 
• head, sector, and track of a hard drive, or 
• tape number and offset for data stored in a tape library. 
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Empty Pages 
• The disk space manager also keeps track of 

used/free blocks. 
  1. Maintain a linked list of free pages 

– When a page is no longer needed, add it to the list. 

  2. Maintain a bitmap with one bit for each page 
– Toggle bit n when page n is (de-)allocated. 
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Buffer Manager 
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Buffer Manager 

• The buffer manager 
– mediates between external 

storage and main memory 
– manages a designated main 

memory area, the buffer pool 
for this task. 

• Disk pages are brought into 
memory as needed and 
loaded into memory frames. 

• A replacement policy 
decides which page to evict 
when the buffer is full. 
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Interface to the Buffer Manager 

• Higher-level code requests (“pins”) pages from the buffer 
manager and releases (“unpins”) pages after use. 
 

  pin(pageno) 
  Request page number pageno from the buffer manager, 
  load it into memory if necessary. Returns a reference to 
  the frame containing pageno. 

 
  unpin(pageno,dirty) 
  Release page number pageno, making it a candidate for  
  eviction. Must set dirty=true if the page was modified. 
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Implementation of pin() 
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Implementation of unpin() 
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Page Replacement 

• Only frames with pinCount=0 can be chosen for 
replacement. 

• If no such frames, the buffer manager has to wait 
until there is one. 

• If many such frames, one is chosen based on the 
buffer manager’s replacement policy. 
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Page Replacement Policies 
• The effectiveness of the buffer manager’s caching 

functionality can depend on the replacement 
policy it uses, e.g., 

• Least Recently Used (LRU) 
– Evict the page whose latest unpin() is the longest ago. 

• Most Recently Used (MRU) 
– Evict the page that has been unpinned the most recently. 

• Random 
– Pick a victim randomly. 
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Buffer Management in Reality 
• Prefetching 

– Buffer managers try to anticipate page requests to overlap 
CPU and I/O operations. 

• Speculative prefetching: Assume sequential scan and 
automatically read ahead. 

• Prefetch lists: Some database algorithms can instruct the buffer 
manager with a list of pages to prefetch. 

• Page fixing/hating 
– Higher-level code may request to fix a page if it may be 

useful in the near future (e.g., index pages). 
– Likewise, an operator that hates a page won’t access it any 

time soon (e.g., table pages in a sequential scan). 
• Partitioned buffer pools 

– E.g., separate pools for indices and tables. 
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Database Systems vs. Operating Systems 
• Didn’t we just re-invent the operating system? 

 
• Yes, 

– disk space management and buffer management very much 
look like file management and virtual memory in OSs. 

 
• But, 

– a DBMS may be much more aware of the access patterns of 
certain operators (prefetching, page fixing/hating), 

– concurrency control often calls for a defined order of write 
operations, 

– technical reasons may make OS tools unsuitable for a 
database (e.g., file size limitation, platform independence). 
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Database Systems vs. Operating Systems 

• In fact, DBMS and OS systems sometimes interfere. 
– Operating system and buffer manager 
 effectively buffer the same data twice. 
– Things get really bad if parts of the 
 DBMS buffer get swapped out to disk by 
 OS VM manager. 
– Similar problems: scheduling  

(Linux 3.6 vs. Postgres) 
– Classical approach: 

databases try to turn off OS 
 functionality as much as possible. 
– Ongoing Research: 

New interfaces, cooperation, e.g. COD at CIDR 2013 
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Files and Records 
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Database Files 
• So far we have talked about pages. Their management is 

oblivious with respect to their actual content. 
• On the conceptual level, a DBMS manages tables of tuples and 

indices (among others). 
• Such tables are implemented as files of records: 

– A file consists of one or more pages. 
– Each page contains one or more records. 
– Each record corresponds to one tuple. 
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Heap Files 
• The most important type of files in a database is the heap file. 
 It stores records in no particular order (in line with, e.g., SQL). 

 
 
 
 
 
 

 + easy to implement 
 – most pages will end up in free page list 
 – might have to search many pages to place a (large) record 
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Heap Files 

• Use as space map with information about free pages 
– granularity for trade-off between space and accuracy 
 (ranges from open/closed bit to exact information) 

+ free space search more efficient 
– small memory overhead to host directory 
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Free Space Management 
Which page to pick for the insertion of a new record? 

 
• Append Only 

– Always insert into the last page. Otherwise, create a new page. 
• Best Fit 

– Reduces fragmentation, but requires searching the entire space map 
for each insert. 

• First Fit 
– Search from the beginning, take first page with enough space. 
 (These pages quickly fill up, and we waste a lot of search effort in 

first pages afterwards.) 
• Next Fit 

– Maintain a cursor and continue searching where the search stopped 
last time. 
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Free Space Witnesses 
• We can accelerate the search by remembering witnesses: 

– Classify pages into buckets, e.g., “75 % – 100% full”, 
 “50 % – 75% full”, “25 % – 50% full”, and “0 % – 25% full”. 
– For each bucket, remember some witness pages. 
– Do a regular best/first/next fit search, only if no witness is 

recorded for the specific bucket. 
– Populate witness information, e.g., as a side effect when 

searching for a best/first/next fit page. 
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Inside a Page 

• record identifier (rid): 
<pageno, slotno> 

• record position (within page): 
slotno x bytes per slot 

• Tuple deletion? 
– record id shouldn’t change 
– slot directory (bitmap) 
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Inside a Page: Variable-sized Fields 

• Variable-sized fields moved 
to end of each record. 
– Placeholder points to 

location. 
• Slot directory points to start 

of each record. 
• Records can move on page. 

– E.g., if field size changes. 
• Create “forward address” if 
 record won’t fit on page. 
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Variants of page layout 
• Row-wise 

 
 
 

• Column-wise 
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Row Stores vs. Column Stores 

• Which one is better? 
• For what? 
• Some ideas for evaluation: 

– How many attributes to tuples have? How many 
of them are read in a typical query 

– How would they deal with different levels of the 
storage hierarchy? 

– What happens on an update? 
– Which one would compress better? 
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Summary 
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