
Module 4

Implementation of XQuery

Part 1: Overview of Compiler, Runtime System

2

Now let us talk XQuery

• Compile Time + Optimizations

– Operator Models

– Query Rewrite

– Runtime + Query Execution

• XML Data Representation

– XML Storage

– XML Indexes

– Compression + Binary XML

3

Code representation

• For SQL, relational algebra

– e.g., joins, scan, group-by, sort, …

– logical and physical operators

• For XQuery, many proposals exist:

– algebra (operators) vs expressions vs automata

– standard algebra for XQuery (-> XQuery Formal Sem.)

– logical vs. physical algebra

– redundant algebra or not

• SQL is redundant at the physical not logical level (!)

– additional structures: dataflow, dependency graphs

4

Automata representation
[YFilter’03, Gupta’03, etc]

 $x/chapter//section/title

• Many variants
– one path vs. a set of paths
– NFAs vs DFAs

• Limitations
– not extensible to full XQuery
– better suited for push execution, pull is harder
– lazy evaluation is hard

chapter section title

*

<book>

 <chapter>

 <section>

 <title/>

 </section>

 </chapter>

</book>

begin book

begin chapter

begin section

begin title

end title

end section

end chapter

end book

5

TLC Algebra
(Jagadish et al. 2004)

• XML Query tree patterns (called twigs)

• Annotated with predicates

• Tree matching as basic operation

– Logical and physical operation

• Tree pattern matching => tuple bindings

(i.e. relations)

• Tuples combined via classical relational

algebra

– Select, project, join, duplicate-elim., …

B

D C E

A

+

+
?

6

XQuery Expressions
XQRL/BEA/Oracle, XL, MXQuery, Zorba / Sausalito

• “Expressions” built during parsing

• (almost) 1-1 mapping between XQuery expressions
and internal expressions
– exception: Match(expr, NodeTest) for path expressions

• Annotated expressions
– E.g. unordered is an annotation

– Annotations exploited during optimization

• Redundant algebra
– general FLWR, but also LET and MAP

– typeswitch, but also instanceof and conditionals

– many different versions of constructor
• streaming vs. blocking; recycling of constructed nodes; node ids

• Support for dataflow analysis is fundamental

1/17/2012

7

Expressions

Constants

Complex Constants

Variable

ForLetVariable

Parameter

CountVariable

ExternalVariable

CastExpr

TreatExpr

IfThenElseExpr

InstanceOfExpr

1/17/2012

8

Expressions

NodeConstructor

FirstOrderExpressions

SecondOrderExpr

FLWRExpr

LetExpr MapExpr

FunctParamCast

CreateIndexExpr

MatchExpr

SortExpr

QuantifiedExpr

9

Expression representation example

• First „normalize“ query – make implicit operations explicit

for $line in $doc/Order/OrderLine

 where $line/SellersID eq 1

 return <lineItem>{$line/Item/ID}</lineItem>

for $line in $doc/Order/OrderLine

 where xs:integer(fn:data($line/SellersID)) eq 1

 return <lineItem>{$line/Item/ID}</lineItem>

10

Translation to expression tree

For

Match (OL)

FO: childr.

Match (O.)

FO: childr.

IfThenElse

FO:eq

Cast

FO:data

Match (S)

FO: childr.

NodeC ()

Match (OL)

FO: childr.

FO: childr.

Match (Item)
Var ($doc)

Const (1)

Var ($line)

Var ($line)

Const („li“)

$line

• Optimization: Transformations on expression tree
• Code gen: Select physical implementation for each expr.

11

Dataflow Analysis

• Annotate each operator (attribute grammars)

– Type of output (e.g., BookType*)

– Is output sorted? Does it contain duplicates?

– Has output node ids? Are node ids needed?

• Annotations computed in walks through plan

– Instrinsic: e.g., preserves sorting

– Synthetic: e.g., type, sorted

– Inherited: e.g., node ids are required

• Optimizations based on annotations

– Eliminate redundant sort operators

– Avoid generation of node ids in streaming apps

12

Dataflow Analysis: Static Type

doc(„bib.xml“)

elem book of BookType

or

elem thesis of BookType

validate as „bib.xsd“

FO:child

FO:child

Match(„book“)

doc of BibType

elem bib of BibType

item*

elem book of BookType

Order, Duplicate Annotations

• Program: $doc/a/b
• Implicit operators of Xpath

– sort in document order

– eliminate duplicates

• Very expensive operations
– do not do them if unnecessary

– do not worry about node-ids if
no necessary

• Example also shows need for
different implementations,
algebraic properties of operators
– dup-elim before / after sort???

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order, Duplicate Annotations: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order, Duplicate Annotations: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order, Duplicate Annotations: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order, Duplicate Annotations: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = yes, Duplicates = no

Order, Duplicate Annotations: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order, Duplicate Annotations: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order, Duplicate Annotations: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Optimizing: $doc/a/b

Var($doc)

FO:Child

Match(„a“)

sort(id)

dup-elim

FO:Child

Match(„a“)

sort(id)

dup-elim

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = ?, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

Order = yes, Duplicates = no

How about $doc//a//b

• Does „//“ preserve order?

• Does „//“ generate duplicates?

• How would you implement „//“

– under which circumstances can you stream it?

– under which circumstances do you have to
materialize?

• Properties of „//“ depend on

– algorithm used to compute „//“

– knowledge of the types

24

Architecture of XQuery Processor

Parsing &

Verification

Code

 rewriting

Code

generation

Executable

 code

Query

Data access

 pattern (APIs)

Internal query/program

 representation

Lower level internal

query representation

Compilation

1/17/2012

25

Major compilation steps

1. Parsing

2. Normalization

3. Type checking

4. Optimization

1. Data access patterns agnostic optimization

2. Optimization that exploit the existing data
access patterns

3. (Cost-based optimizations)

5. Code Generation

26

XQuery Rewritings

• Algebraic properties of comparisons

• Algebraic properties of Boolean operators

• LET clause folding and unfolding

• Function inlining

• Constant folding

• Common sub-expressions factorization

• Type based rewritings

• Navigation based rewritings

27

Algebraic properties of comparisons

• General comparisons not reflexive, transitive
– (1,3) = (1,2) (but also !=, <, >, <=, >= !!!!!)
– Reasons

• implicit existential quantification, dynamic casts

• Negation rule does not hold
– fn:not($x = $y) is not equivalent to $x != $y

• Value comparisons are almost transitive
– Exception:

• xs:decimal due to the loss of precision

Impact on grouping, hashing, indexing, caching !!!

28

Properties of Boolean operators

• And, Or are commutative

• Short-circuiting is allowed

• Boolean operators are non-deterministic

– surprise for programmers (lost satellites):
If (($x castable as xs:integer) and

(($x cast as xs:integer) eq 2)) …

– Is SQL deterministic? How can that happen in
SQL?

• 2 value logic (unlike SQL!)

– () is converted into fn:false() before use

• Conventional distributivity rules hold

29

LET clause folding

• Traditional rewriting

let $x := 3 3+2
return $x +2

• Not so easy!

let $x := <a/> (<a/>, <a/>) NO. Side effects.
return ($x, $x) (Node identity)

declare namespace ns=“uri1” NO. Context sensitive
let $x := <ns:a/> namespace processing.
return <b xmlns:ns=“uri2”>{$x}

declare namespace ns =“uri1”
<b xmlns:ns=“uri2”>{<ns:a/>}

30

LET clause folding (cont.)

• Impact of unordered{..} /* context sensitive*/

let $x := ($y/a/b)[1] the c’s of a specific b parent

return unorderded { $x/c } (in no particular order)

not equivalent to

unordered {($y/a/b)[1]/c } the c’s of “some” b

 (in no particular order)

31

LET Clause Folding

• Sufficient conditions for correct rewriting of … into …

(: before LET :) (: before LET :)

let $x := expr1 (: after LET :)

(: after LET :) return expr2’
return expr2

 where expr2’ is expr2

 with substitution {$x => expr1}

• Expr1 does not generate new nodes

• OR $x is used
a) only once and

b) not part of a loop and

c) not input to a recursive function

• Dataflow analysis required

32

Let Clause Unfolding

• Traditional rewriting
for $x := (1 to 10) let $y := ($input+2)

return ($input+2)+$x for $x in (1 to 10)

 return $y+$x

• Not so easy!
– Same problems as beforee: side-effects, NS handling, unordered

– Additional problem: error handling

for $x in (1 to 10) let $y := ($input idiv 0)

return if($x lt 1) for $x in (1 to 10)

 then ($input idiv 0) return if ($x lt 1)

 else $x then $y

 else $x

Guaranteed only if runtime implements consistently lazy evaluation.

Otherwise dataflow analysis and error analysis required.

33

Function inlining

• Traditional FP rewriting technique
define function f($x as xs:integer) as xs:integer 2+1

{$x+1}

f(2)

• Not always!
– Same problems as for LET (NS handling, side-effects, unordered

– Additional problems: implicit operations (atomization, casts)

define function f($x as xs:double) as xs:boolean

{$x instance of xs:double}

f(2)

(2 instance of xs:double) NO

• Make sure this rewriting is done after normalization

34

Constant folding

• Place constant values where the result can already
be determined at compile time

for $x in (1 to 10) for $x in (1 to 10)

where $x eq 3 where $x eq 3

return $x+1 return (3+1)

35

Constant folding - counterexamples

for $x in $input/a for $x in $input/a
where $x eq 3 where $x eq 3
return {$x} return {3}

for $x in (1.0,2.0,3.0)
where $x eq 1
return ($x instance of xs:integer)

for $x in (1.0,2.0,3.0)
where $x eq 1
return (1 instance of xs:integer)

36

Common Sub-expressions

• Preliminary questions
– Same expression ?

– Same context ?

– Error “equivalence” ?

– Create the same new nodes?

for $x in $input/a/b let $y := (1 idiv 0)

where $x/c lt 3 for $x in $input/a/b

return if ($x/c lt 2) where $x/c lt 3

 then if ($x/c eq 1) return if($x/c lt 2)

 then (1 idiv 0) then if ($x/c eq 1)

 else $x/c+1 then $y

 else if($x/c eq 0) else $x/c+1

 then (1 idiv 0) else if($x/c eq 0)

 else $x/c+2 then $y

 else $x/c+2

1/17/2012

37

FLWR unnesting

• Traditional database technique
for $x in (for $y in $input/a/b for $y in $input/a/b,

 where $y/c eq 3 $x in $y/d

 return $y/d) where ($x/e eq 4) and ($y/c eq 3)

where $x/e eq 4 return $x

return $x

• Problem simpler than in OQL/ODMG

– No nested collections in XML

• Order-by more complicated

1/17/2012

38

FLWR unnesting (2)

• Another traditional database technique
for $x in $input/a/b for $x in $input/a/b,

where $x/c eq 3 $y in $x/d

return (for $y in $x/d) where ($x/e eq 4) and

($y/c eq 3)

 where $x/e eq 4 return $y

 return $y)

39

Type-based rewritings

• Increase the advantages of lazy evaluation
– $input/a/b/c ((($input/a)[1]/b[1])/c)[1]

• Eliminate the need for expensive operations (e.g.,sort)
– $input//a/b $input/c/d/a/b

• Static dispatch for overloaded built-in functions
– e.g. min, max, avg, arithmetics, comparisons

– Maximizes the use of indexes

• Elimination of no-operations
– e.g. casts, atomization, effective boolean value

• Choice of various run-time implementations for certain

logical operations

40

Dealing with backwards navigation

• Replace backwards navigation with forward axis

for $x in $input/a/b for $y in $input/a,

return <c>{$x/.., $x/d}</c> $x in $y/b

 return <c>{$y, $x/d}</c>

for $x in $input/a/b

return <c>{$x//e/..}</c> ??

• Enables streaming

YES

41

More compiler support for efficient

execution

• Streaming vs. data materialization

• Node identifiers handling

• Document order handling

• Scheduling for parallel execution

42

Detour/Background: Query Evaluation

• Hard to discuss special algorithms

– Strongly depend on algebra

– Strongly depends on the data storage, APIs
and indexing

• Main issues:

1. Streaming or materializing evaluations

2. Lazy evaluation or not

43

Lazy Evaluation

• Compute expressions on demand

– compute results only if they are needed

– requires a pull-based interface (e.g. iterators)

• Example:

declare function endlessOnes() as integer*

 { (1, endlessOnes()) };

some $x in endlessOnes() satisfies $x eq 1

• The result of this program should be: true

44

Lazy Evaluation

• Lazy Evaluation also good for SQL

– e.g., nested queries

• Particularly important for XQuery

– existential, universal quantification (often implicit)

– top N, positional predicates

– recursive functions (non terminating functions)

– if then else expressions

– match

– correctness of rewritings, …

45

Stream-based Processing

• Pipe input data through query operators

– produce results before input is fully read

– produce results incrementally

– minimize the amount of memory required for the
processing

• Stream-based processing

– online query processing, continuous queries

– particularly important for XML message routing

• Traditional in the database/SQL community

46

Stream based processing issues

• Streaming burning questions :
– push or pull ?

– Granularity of streaming ? Byte, event, item ?

– Streaming with flexible granularity ?

• Pure streaming ?
– Processing XQuery needs some data materialization

– Compiler support to detect and minimize data
materialization

• Notes:
– Streaming + Lazy Evaluation possible

– Partial Streaming possible/necessary

47

When should we materialize?

• Pipeline breakders operators (e.g. sort)

• Other conditions:

– Whenever a variable is used multiple times

– Whenever a variable is used as part of a loop

– Whenever the content of a variable is given as
input to a recursive function

– In case of backwards navigation

• Those are the ONLY cases

• materialization can be partial and lazy

• Compiler can detect via dataflow analysis

48

How to minimize the use of node IDs?

• Node identifiers are required by the XQuery
Data model but onerous (time, space)

• Solution:

1.Decouple the node construction operation from
the node id generation operation

2.Generate node ids only if really needed
• Only if the query contains (after optimization) operators

that need node identifiers (e.g. sort by doc order, is,
parent, <<) OR node identifiers are required for the
result (e.g., XQuery Update Facility)

• Compiler support: dataflow analysis

49

How can we deal with Xpath?

• Sorting by document order and duplicate
elimination required by the XQuery
semantics but very expensive

• Semantic conditions
– $document / a / b / c

• Guaranteed to return results in doc order and not to
have duplicates

– $document / a // b
• Guaranteed to return results in doc order and not to

contain duplicates

– $document // a / b
• NOT guaranteed to return results in doc order but

guaranteed not to contain duplicates

– $document // a // b $document / a / .. / b
• Nothing can be said in general

50

Parallel execution

ns1:WS1($input)+ns2:WS2($input)

for $x in (1 to 10)
return ns:WS($i)

• Certain expressions can be executed in parallel

– Scheduling based on data dependency

• Parallelism within a single expression

– Horizontal and vertical partitioning

• errors and paralellism is tricky
– in particular for side-effecting expressions

51

XQuery expression analysis (1)

• How many times expression uses a variable?
– potential for common subexpression factorization

• Does expression use variable in loop?
– limits unfolding

• Is an expression a map on a certain variable?
– great for parallelization

• Does expression return results in doc order?
– eliminate unnecessary sorts

• Does expression return distinct nodes?
– eliminate unnecessary duplicate-elims

52

XQuery expression analysis (2)

• Is an expression a “function”?
• Can the result of an expression contain

newly created nodes ?
• Is the evaluation of an expression context-

sensitive ?
• Can an expression raise user errors ?
• Is a sub expression of an expression

guaranteed to be executed ?
• Etc.

53

Compiling XQuery vs. XSLT

• Empiric assertion : it depends on the entropy

level in the data (see M. Champion xml-dev):
– XSLT easier to use if the shape of the data is totally unknown

(entropy high)

– XQuery easier to use if the shape of the data is known (entropy

low)

• Dataflow analysis possible in XQuery,

much harder in XSLT
– Static typing, error detection, lots of optimizations

• Conclusion: less entropy means more potential

for optimization, unsurprisingly.

