Module 4

Implementation of XQuery

Part 1. Overview of Compiler, Runtime System

Now let us talk XQuery

 Compile Time + Optimizations
— Operator Models
— Query Rewrite
— Runtime + Query Execution

XML Data Representation
— XML Storage

— XML Indexes
— Compression + Binary XML

Code representation

* For SQL, relational algebra
— e.g., Joins, scan, group-by, sort, ...
— logical and physical operators

« For XQuery, many proposals exist:
— algebra (operators) vs expressions vs automata
— standard algebra for XQuery (-> XQuery Formal Sem.)
— logical vs. physical algebra

— redundant algebra or not
« SQL is redundant at the physical not logical level (!)

— additional structures: dataflow, dependency graphs

Automata representation
[YFilter '03, Gupta 03, etc]
Sx/chapter//section/title

<book> begin book
<chapter> begin chapter
<section> begin section
chapter __section title <title/> begin title
Q* </section> end title
</chapter> end section
</book> end chapter
end book

« Many variants
— one path vs. a set of paths
— NFAs vs DFAs

* Limitations
— not extensible to full XQuery
— better suited for push execution, pull is harder
— lazy evaluation is hard

TLC Algebra

(Jagadish et al. 2004)

XML Query tree patterns (called twigs)
Annotated with predicates

Tree matching as basic operation
— Logical and physical operation

Tree pattern matching => tuple bindings
(I.e. relations)

Tuples combined via classical relational
algebra

— Select, project, join, duplicate-elim., ...

XQuery Expressions

XQRL/BEA/Oracle, XL, MXQuery, Zorba / Sausalito

“Expressions” built during parsing

(almost) 1-1 mapping between XQuery expressions
and internal expressions

— exception: Match(expr, NodeTest) for path expressions

Annotated expressions
— E.g. unordered is an annotation
— Annotations exploited during optimization

Redundant algebra
— general FLWR, but also LET and MAP
— typeswitch, but also instanceof and conditionals
— many different versions of constructor
 streaming vs. blocking; recycling of constructed nodes; node ids

Support for dataflow analysis is fundamental

Expressions

Constants

IfThenElseExpr
Complex Constants
CastExpr
InstanceOfExpr
Variable TreatExpr
ForLetVariable CountVariable
Parameter

ExternalVariable

Expressions

NodeConstructor

FirstOrderExpressions
FunctParamCast

MatchExpr
SecondOrderExpr

\

SortExpr CreatelndexExpr

FLWREXxpr
LetExpr QuantifiedExpr

MapExpr

Expression representation example

* First ,normalize” query — make implicit operations explicit

for $line in $doc/Order/OrderLine
where $line/SellersID eq 1
return <lineltem>{$line/ltem/ID}</lineltem>

—

for $line in $doc/Order/OrderLine
where xs:integer(fn:data($line/SellersiD)) eq 1
return <lineltem>{$line/ltem/ID}</lineltem>

Translation to expression tree

$line

IfThenElse

Match (OL) FO:eq NodeC
FO: childr. =
—— Cast Const (,,1i%)
atch (O.) FO:data Match (OL)
FO: childr. Match (S) Const (1) 5o
- childr.
Var ($doc) FO: childr. Match (Item)
Var ($line) FO: childr.
Var ($line)

e Optimization: Transformations on expression tree
* Code gen: Select physical implementation for each expr.

Dataflow Analysis

« Annotate each operator (attribute grammars)
— Type of output (e.g., BookType*)
— |s output sorted? Does it contain duplicates?
— Has output node ids? Are node ids needed?

« Annotations computed in walks through plan
— Instrinsic: e.g., preserves sorting
— Synthetic: e.g., type, sorted
— Inherited: e.g., node ids are required

« Optimizations based on annotations

— Eliminate redundant sort operators
— Avoid generation of node ids in streaming apps

Dataflow Analysis: Static Type

Match(,,book*) elem book of BookType
elem book of BookType

FO:child or
elem thesis of BookType

FO:child elem bib of BibType

validate as ,,bib.xsd* doc of BibType

doc(,,bib.xml*) item*

Order, Duplicate Annotations

* Program: $doc/a/b

* Implicit operators of Xpath
— sort in document order
— eliminate duplicates

* Very expensive operations
— do not do them if unnecessary

— do not worry about node-ids if
nNo necessary

 Example also shows need for
different implementations,
algebraic properties of operators

— dup-elim before / after sort???

1191944

Y, (1 C

Order, Duplicate Annotations: $doc/a/b

dup-elim

sort(id)

Match(,,a“

—

FO:Child
dup-elim
sort(id)
Match(,,a“)

FO:Child

Order = ?, Duplicates = no Var($Sdoc)

Order, Duplicate Annotations: $doc/a/b

dup-elim

sort(id)

Match(,,a“

—

FO:Child
dup-elim
sort(id)
Match(,,a“)

Order = ?, Duplicates = no FO:Child

Order = ?, Duplicates = no Var(Sdoc)

Order, Duplicate Annotations: $doc/a/b
dup-efim
~sort(id)

Match(,,a“)

dup-elim

sort(id)

FO:Child
dup-elim

sort(id)

Order = ?, Duplicates = no Match(,a“)

Order = ?, Duplicates = no FO:Child

Order = ?, Duplicates = no Var($Sdoc)

Order, Duplicate Annotations: $doc/a/b
dup-efim
~sort(id)

Match(,,a“)

dup-elim

sort(id)

FO:Child

dup-elim

Order = yes, Duplicates = no sort(id)

Order = ?, Duplicates = no Match(,a“)

Order = ?, Duplicates = no FO:Child

Order = ?, Duplicates = no Var(Sdoc)

Order, Duplicate Annotations: $doc/a/b
dup-efim
~sort(id)

Match(,,a“)

dup-elim

sort(id)

FO:Child

Order = yes, Duplicates = no ezl

Order = yes, Duplicates = no sort(id)

Order = ?, Duplicates = no Match(,a“)

Order = ?, Duplicates = no FO:Child

Order = ?, Duplicates = no Var(Sdoc)

Order, Duplicate Annotations: $doc/a/b
dup-efim
~sort(id)

Match(,,a“)

dup-elim

sort(id)

Order = yes, Duplicates = no | zeHe.

Order = yes, Duplicates = no eIl

Order = yes, Duplicates = no sort(id)

Order = ?, Duplicates = no Match(,a“)

Order = ?, Duplicates = no FO:Child

Order = ?, Duplicates = no Var(Sdoc)

Order, Duplicate Annotations: $doc/a/b

Order = yes, Duplicates = no Il

Order = yes, Duplicates = no sort(id)

Order = yes, Duplicates = no QUELC (WY

Order = yes, Duplicates = no [EZeHe |l

Order = yes, Duplicates = no eIl

Order = yes, Duplicates = no sort(id)

Order = ?, Duplicates = no Match(,a“)

Order = ?, Duplicates = no FO:Child

Order = ?, Duplicates = no Var(Sdoc)

Optimizing: $doc/a/b

Order = yes, Duplicates

Order = yes, Duplicates

Order = yes, Duplicates

Order = yes, Duplicates

Order = yes, Duplicates

Order
Order
Order
Order

yes, Duplicates
?, Duplicates =
?, Duplicates =

?, Duplicates =

= no dup-elim

= no sort(id)

= no BVYEIIFER
= no FO:Child

= no dup-elim

= no sort(id)

no Match(,,a“)

no FO:Child

no Var(Sdoc)

How about Sdoc//a//b

Does ,,//" preserve order?

Does ,,//“ generate duplicates?

How would you implement ,,//“
— under which circumstances can you stream it?

— under which circumstances do you have to
materialize?

Properties of ,,//“ depend on
— algorithm used to compute ,,//*“
— knowledge of the types

Architecture of XQuery Processor

Query

Parsing &
Verification

o — Internal query/program
Compilation representation
< Code
rewriting
Code
eneration :
Data access._ ¢ Lower level internal

pattern (APISs)

AN

—— query representation

Executable K>\
code

Major compilation steps

1. Parsing
2. Normalization
3. Type checking

4. Optimization
1. Data access patterns agnostic optimization

2. Optimization that exploit the existing data
access patterns

3. (Cost-based optimizations)
5. Code Generation

XQuery Rewritings

Algebraic properties of comparisons
Algebraic properties of Boolean operators
LET clause folding and unfolding
Function inlining

Constant folding

Common sub-expressions factorization
Type based rewritings

Navigation based rewritings

Algebraic properties of comparisons

« General comparisons not reflexive, transitive

— Reasons
* implicit existential quantification, dynamic casts

« Negation rule does not hold
— fn:not($x = Py) is not equivalent to $x = By

« Value comparisons are almost transitive

— EXxception:
« Xxs:decimal due to the loss of precision

Impact on grouping, hashing, indexing, caching !!!

Properties of Boolean operators

And, Or are commutative
Short-circuiting Is allowed

Boolean operators are non-deterministic

— surprise for programmers (lost satellites):.

If ((S$Sx castable as xs:integer) and
((Sx cast as xs:integer) eq 2)) ..

— Is SQL deterministic? How can that happen in
SQL?

2 value logic (unlike SQL!)
— () Is converted into fn:false() before use
Conventional distributivity rules hold

LET clause folding

 Traditional rewriting
let $x ;= 3 - 3+2
return $x +2

* Not so easy!

let $x := <a/> ﬁ? (<a/>, <al>) NO. Side effects.
return ($x, $x) (Node identity)

declare namespace ns="“uril” NO. Context sensitive
let $x := <ns:a/> namespace processing.
return <b xmins:ns=“uri2”>{$x}

i

declare namespace ns =“uril”
<b xmlIns:ns=“uri2”>{<ns:a/>}

LET clause folding (cont.)
* Impact of unordered{..} /* context sensitive*/

let $x = ($y/a/b)[1] the ¢’ s of a specific b parent
return unorderded { $x/c } (in no particular order)

not equivalent to

unordered {($y/a/b)[1]/c } the ¢’ s of “some” b
(in no particular order)

LET Clause Folding

Sufficient conditions for correct rewriting of ... into ...

(: before LET) (: before LET)
let $x := exprl (: after LET :)
(: after LET) return expr2’

return expr2
where expr2’ is expr2
with substitution {$x => exprl}

Exprl does not generate new nodes

OR $x is used

a) only once and
b) not part of a loop and
C) not input to a recursive function

Dataflow analysis required

Let Clause Unfolding

 Traditional rewriting
for $x := (1 to 10) let $y := ($input+2)
return ($input+2)+$x for $x in (1 to 10)
return $y+3x
* Not so easy!
— Same problems as beforee: side-effects, NS handling, unordered
— Additional problem: error handling

for $xin (1 to 10) let $y := ($input idiv 0)
return if($x It 1) “ for $x in (1 to 10)
then ($input idiv 0) return if ($x It 1)
else $x then $y
else $x

Guaranteed only if runtime implements consistently lazy evaluation
Otherwise dataflow analysis _and error analysis required.

Function Inlining

 Traditional FP rewriting technique
define function f($x as xs:integer) as xs:integer ‘ 2+1
{$x+1}
f(2)

* Not always!

— Same problems as for LET (NS handling, side-effects, unordered
— Additional problems: implicit operations (atomization, casts)
define function f($x as xs:double) as xs:boolean
{$x instance of xs:double}
f(2)

(2 instance of xs:double) NO

« Make sure this rewriting is done after normalization

Constant folding

« Place constant values where the result can already
be determined at compile time

for $x in (1 to 10) ‘ for $xin (1 to 10)
where $x eq 3 where $x eq 3
return $x+1 return (3+1)

Constant folding - counterexamples

for $x in $input/a for $x in $input/a
where $x eq 3 % where $x eq 3
return {$x} return {3}

for $x in (1.0,2.0,3.0)
where $x eq 1
return ($x instance of xs:integer)

for $x in (1.0,2.0,3.0)
where $x eq 1
return (1 instance of xs:integer)

Common Sub-expressions

* Preliminary questions

Same expression ?

Same context ?

Error “equivalence” ?

Create the same new nodes?

for $x in $input/a/b
where $x/c It 3
return if ($x/c It 2)

then if ($x/c eq 1)
then (1 idiv 0)
else $x/c+1

else if($x/c eq 0)

then (1 idiv 0)
else $x/c+2

let $y := (1 idiv 0)
for $x in $input/a/b
where $x/c It 3
return if($x/c It 2)
then if ($x/c eq 1)
then $y
else $x/c+1
else if($x/c eq 0)
then $y
else $x/c+2

FLWR unnesting

* Traditional database technigue

for $x in (for $y in $input/a/b for $y in $input/a/b,

where $y/c eq 3 $x in $y/d

return $y/d) where ($x/e eq 4) and ($y/c eq 3)
where $x/e eq 4 return $x
return $x

* Problem simpler than in OQL/ODMG
— No nested collections in XML

* Order-by more complicated

FLWR unnesting (2)

* Another traditional database technique

for $x in $input/a/b for $x in $input/a/b,
where $x/c eq 3 $y in $x/d
return (for $y in $x/d) where ($x/e eq 4) and
($y/c eq 3)
where $x/e eq 4 return $y

return $y)

Type-based rewritings

Increase the advantages of lazy evaluation

— $input/a/blc D ((Sinput/a)[LV/b[1])/c)[1]

Eliminate the need for expensive operations (e.g.,sort)
— $input//a/lb mmm) $input/c/d/a/b

Static dispatch for overloaded built-in functions
— e.g. min, max, avg, arithmetics, comparisons
— Maximizes the use of indexes

Elimination of no-operations
— e.g. casts, atomization, effective boolean value

Choice of various run-time implementations for certain
logical operations

Dealing with backwards navigation

* Replace backwards navigation with forward axis

for $x in $input/a/b mm) for Sy in $input/a, YES
return <c>{$x/.., $x/d}</c> $x in $y/b

return <c>{$y, $x/d}</c>

for $x in $input/a/b
return <c>{$x//e/..}</c> ??

« Enables streaming

More compliler support for efficient
execution

Streaming vs. data materialization
Node identifiers handling
Document order handling
Scheduling for parallel execution

Detour/Background: Query Evaluation

« Hard to discuss special algorithms
— Strongly depend on algebra

— Strongly depends on the data storage, APIs
and indexing

e Malin issues:

1. Streaming or materializing evaluations
2. Lazy evaluation or not

Lazy Evaluation

« Compute expressions on demand
— compute results only if they are needed
— requires a pull-based interface (e.g. iterators)

« Example:

declare function endlessOnes() as integer*
{ (1, endlessOnes()) };
some $x in endlessOnes() satisfies $x eq 1

* The result of this program should be: true

Lazy Evaluation

» Lazy Evaluation also good for SQL
— e.g., hested gueries

 Particularly important for XQuery
— existential, universal quantification (often implicit)
—top N, positional predicates
— recursive functions (non terminating functions)
— If then else expressions
— match
— correctness of rewritings, ...

Stream-based Processing

* Pipe input data through query operators
— produce results before input is fully read
— produce results incrementally

— minimize the amount of memory required for the
processing

» Stream-based processing
— online query processing, continuous queries
— particularly important for XML message routing

* Traditional in the database/SQL community

Stream based processing issues

« Streaming burning questions :
— push or pull ?
— Granularity of streaming ? Byte, event, item ?
— Streaming with flexible granularity ?

* Pure streaming ?

— Processing XQuery needs some data materialization
— Compiler support to detect and minimize data
materialization
* Notes:

— Streaming + Lazy Evaluation possible
— Partial Streaming possible/necessary

When should we materialize?

Pipeline breakders operators (e.g. sort)

Other conditions:
— Whenever a variable is used multiple times
— Whenever a variable is used as part of a loop

— Whenever the content of a variable is given as
Input to a recursive function

— In case of backwards navigation

hose are the ONLY cases
materialization can be partial and lazy
Compiler can detect via dataflow analysis

How to minimize the use of node IDs?

* Node identifiers are required by the XQuery
Data model but onerous (time, space)

e Solution:

1.Decouple the node construction operation from
the node id generation operation

2.Generate node ids only if really needed

« Only if the query contains (after optimization) operators
that need node identifiers (e.g. sort by doc order, is,
parent, <<) OR node identifiers are required for the
result (e.g., XQuery Update Facility)

« Compliler support: dataflow analysis

How can we deal with Xpath?

« Sorting by document order and duplicate
elimination required by the XQuery
semantics but very expensive

« Semantic conditions

— $document/a/b/c

« Guaranteed to return results in doc order and not to
have duplicates

— $document/all b

« Guaranteed to return results in doc order and not to
contain duplicates

— $document//al/b

 NOT guaranteed to return results in doc order but
guaranteed not to contain duplicates

— $document// al/l b $document/a/../b
« Nothing can be said in general

Parallel execution

nsl:WS1($input)+ns2:WS2($input)

for $x in (1 to 10)
return ns:WS($i)

« Certain expressions can be executed in parallel
— Scheduling based on data dependency

« Parallelism within a single expression
— Horizontal and vertical partitioning

 errors and paralellism is tricky
— In particular for side-effecting expressions

XQuery expression analysis (1)

How many times expression uses a variable?
— potential for common subexpression factorization

Does expression use variable in loop?
— limits unfolding

IS an expression a map on a certain variable?
— great for parallelization

Does expression return results in doc order?
— eliminate unnecessary sorts

Does expression return distinct nodes?
— eliminate unnecessary duplicate-elims

XQuery expression analysis (2)

Is an expression a “function”?

Can the result of an expression contain
newly created nodes ?

Is the evaluation of an expression context-
sensitive ?
Can an expression raise user errors ?

Is a sub expression of an expression
guaranteed to be executed ?

EtcC.

Compiling XQuery vs. XSLT

« Empiric assertion : it depends on the entropy

level in the data (see M. Champion xmi-dev):

— XSLT easier to use if the shape of the data is totally unknown
(entropy high)

— XQuery easier to use if the shape of the data is known (entropy
low)

« Dataflow analysis possible in XQuery,
much harder in XSLT

— Static typing, error detection, lots of optimizations

« Conclusion: less entropy means more potential
for optimization, unsurprisingly.

