
Module 4 

 

Implementation of XQuery 

 
Part 1: Overview of Compiler, Runtime System 
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Now let us talk XQuery 

• Compile Time + Optimizations 

– Operator Models 

– Query Rewrite 

– Runtime + Query Execution 

• XML Data Representation  

– XML Storage 

– XML Indexes 

– Compression + Binary XML 
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Code representation 

• For SQL, relational algebra  

– e.g., joins, scan, group-by, sort, … 

– logical and physical operators 

• For XQuery, many proposals exist: 

– algebra (operators) vs expressions vs automata  

– standard algebra for XQuery (-> XQuery Formal Sem.) 

– logical vs. physical algebra 

– redundant algebra or not  

• SQL is redundant at the physical not logical level (!) 

– additional structures: dataflow, dependency graphs 
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Automata representation 
[YFilter’03, Gupta’03, etc] 

 $x/chapter//section/title 

 

 
 

 

 
 
 

• Many variants 
– one path vs. a set of paths 
– NFAs vs DFAs 

• Limitations 
– not extensible to full XQuery 
– better suited for push execution, pull is harder 
– lazy evaluation is hard 

chapter section title 

* 

<book> 

     <chapter> 

         <section> 

               <title/> 

         </section> 

     </chapter> 

</book> 

begin book 

begin chapter 

begin section 

begin title 

end title 

end section 

end chapter 

end book 
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TLC Algebra 
(Jagadish et al. 2004) 

• XML Query tree patterns (called twigs) 

• Annotated with predicates 

• Tree matching as basic operation 

– Logical and physical operation 

 

• Tree pattern matching => tuple bindings 

(i.e. relations) 

• Tuples combined via classical relational 

algebra 

– Select, project, join, duplicate-elim., … 

 

B 

D C E 

A 

+ 

+ 
? 
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XQuery Expressions 
XQRL/BEA/Oracle, XL, MXQuery, Zorba / Sausalito 

 

• “Expressions” built during parsing 

• (almost) 1-1 mapping between XQuery expressions 
and internal expressions 
– exception: Match( expr, NodeTest) for path expressions  

• Annotated expressions 
– E.g. unordered is an annotation 

– Annotations exploited during optimization 

• Redundant algebra 
– general FLWR, but also LET and MAP 

– typeswitch, but also instanceof and conditionals 

– many different versions of constructor  
• streaming vs. blocking;  recycling of constructed nodes; node ids 

• Support for dataflow analysis is fundamental  
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Expressions 

Constants 

Complex Constants 

Variable 

ForLetVariable 

Parameter 

CountVariable 

ExternalVariable 

CastExpr 

TreatExpr 

IfThenElseExpr 

InstanceOfExpr 
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Expressions 

NodeConstructor 

FirstOrderExpressions 

SecondOrderExpr 

FLWRExpr 

LetExpr MapExpr 

FunctParamCast 

CreateIndexExpr 

MatchExpr 

SortExpr 

QuantifiedExpr 
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Expression representation example 

• First „normalize“ query – make implicit operations explicit 

 

for $line in $doc/Order/OrderLine 

   where $line/SellersID eq 1 

   return <lineItem>{$line/Item/ID}</lineItem> 

 

  

 

for $line in $doc/Order/OrderLine 

       where xs:integer(fn:data($line/SellersID)) eq 1 

       return <lineItem>{$line/Item/ID}</lineItem> 
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Translation to expression tree 

For 

Match (OL) 

FO: childr. 

Match (O.) 

FO: childr. 

IfThenElse 

FO:eq 

Cast 

FO:data 

Match (S) 

FO: childr. 

NodeC () 

Match (OL) 

FO: childr. 

FO: childr. 

Match (Item) 
Var ($doc) 

Const (1) 

Var ($line) 

Var ($line) 

Const („li“) 

$line 

 
• Optimization:  Transformations on expression tree 
• Code gen:  Select physical implementation for each expr. 
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Dataflow Analysis 

• Annotate each operator (attribute grammars) 

– Type of output (e.g., BookType*) 

– Is output sorted?  Does it contain duplicates? 

– Has output node ids?  Are node ids needed? 

• Annotations computed in walks through plan 

– Instrinsic: e.g., preserves sorting 

– Synthetic: e.g., type, sorted 

– Inherited: e.g., node ids are required 

• Optimizations based on annotations 

– Eliminate redundant sort operators 

– Avoid generation of node ids in streaming apps 
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Dataflow Analysis: Static Type 

doc(„bib.xml“) 

elem book of BookType 

or  

elem thesis of BookType  

validate as „bib.xsd“  

FO:child 

FO:child 

Match(„book“) 

doc of BibType 

elem bib of BibType 

item* 

elem book of BookType 



Order, Duplicate Annotations 

• Program:  $doc/a/b 
• Implicit operators of Xpath 

– sort in document order 

– eliminate duplicates 

• Very expensive operations 
– do not do them if unnecessary 

– do not worry about node-ids if 
no necessary 

• Example also shows need for 
different implementations, 
algebraic properties of operators 
– dup-elim before / after sort??? 

 
 

 
 
 
 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 



Order, Duplicate Annotations: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 



Order, Duplicate Annotations: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 



Order, Duplicate Annotations: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 



Order, Duplicate Annotations: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = yes, Duplicates = no 



Order, Duplicate Annotations: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 



Order, Duplicate Annotations: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 



Order, Duplicate Annotations: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 



Optimizing: $doc/a/b 

Var($doc) 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

FO:Child 

Match(„a“) 

sort(id) 

dup-elim 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = ?, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 

Order = yes, Duplicates = no 



How about $doc//a//b 

• Does „//“ preserve order? 

• Does „//“ generate duplicates? 

• How would you implement „//“ 

– under which circumstances can you stream it? 

– under which circumstances do you have to 
materialize? 

• Properties of „//“ depend on 

– algorithm used to compute „//“ 

– knowledge of the types 
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Architecture of XQuery Processor 

Parsing & 

Verification 

Code 

 rewriting 

Code 

generation 

Executable 

 code 

Query 

Data access 

 pattern (APIs) 

Internal query/program 

 representation 

Lower level internal  

query representation 

Compilation 
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Major compilation steps 

1. Parsing 

2. Normalization 

3. Type checking 

4. Optimization 

1. Data access patterns agnostic optimization 

2. Optimization that exploit the existing data 
access patterns 

3. (Cost-based optimizations) 

5. Code Generation 
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XQuery Rewritings 

• Algebraic properties of comparisons 

• Algebraic properties of Boolean operators 

• LET clause folding and unfolding 

• Function inlining 

• Constant folding 

• Common sub-expressions factorization 

• Type based rewritings 

• Navigation based rewritings 
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Algebraic properties of comparisons 

• General comparisons not reflexive, transitive 
– (1,3)  = (1,2) (but also !=, <, >, <=, >= !!!!!) 
– Reasons 

•  implicit existential quantification, dynamic casts 

 
 

• Negation rule does not hold 
– fn:not($x = $y) is not equivalent to $x != $y 

 

• Value comparisons are almost transitive 
– Exception:  

• xs:decimal due to the loss of precision 
 

Impact on grouping, hashing, indexing, caching !!! 
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Properties of Boolean operators 

• And, Or are commutative  

• Short-circuiting is allowed 

• Boolean operators are non-deterministic 

– surprise for programmers (lost satellites): 
If (($x castable as xs:integer) and  

(($x cast as xs:integer) eq 2) ) … 

– Is SQL deterministic? How can that happen in 
SQL? 

• 2 value logic (unlike SQL!) 

– () is converted into fn:false() before use 

• Conventional distributivity rules hold 
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LET clause folding 

• Traditional rewriting 
 
let $x := 3                        3+2 
return $x +2 

 

• Not so easy! 
 
let $x := <a/>                (<a/>, <a/> )          NO. Side effects.  
return ($x, $x )       (Node identity) 

  
declare namespace ns=“uri1”                   NO. Context sensitive 
let $x := <ns:a/>                                        namespace processing. 
return <b xmlns:ns=“uri2”>{$x}</b> 
 

 
declare namespace ns =“uri1” 
<b xmlns:ns=“uri2”>{<ns:a/>}</b> 
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LET clause folding (cont.) 

• Impact of unordered{..} /* context sensitive*/ 

 
let $x := ($y/a/b)[1]                the c’s of a specific b parent 

return unorderded { $x/c }          (in no particular order) 

 

not equivalent to 

unordered {($y/a/b)[1]/c }      the c’s of “some” b 

                                     (in no particular order) 
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LET Clause Folding 

• Sufficient conditions for correct rewriting of … into … 
 

(: before LET :)                    (: before LET :) 

let $x := expr1                      (: after LET :) 

(: after LET :)                        return expr2’    
return expr2                   

                                             where expr2’ is expr2  

       with substitution {$x => expr1} 

 
 

• Expr1 does not generate new nodes 

• OR $x is used  
a) only once and  

b) not part of a loop and  

c) not input to a recursive function 

• Dataflow analysis required 
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Let Clause Unfolding 

• Traditional rewriting 
for $x := (1 to 10)                    let $y := ($input+2) 

return ($input+2)+$x               for $x in (1 to 10) 

                                                return  $y+$x 

• Not so easy! 
– Same problems as beforee: side-effects, NS handling, unordered  

– Additional problem: error handling 

for $x in (1 to 10)                          let $y := ($input idiv 0) 

return  if($x lt 1)                            for $x in (1 to 10) 

           then  ($input idiv 0)            return if ($x lt 1) 

           else  $x                                        then $y 

                                                                     else  $x 

Guaranteed only if runtime implements consistently lazy evaluation. 

Otherwise dataflow analysis  and error analysis required. 
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Function inlining 

• Traditional FP rewriting technique 
define function f($x as xs:integer) as xs:integer                 2+1 

{$x+1} 

f(2) 

• Not always! 
– Same problems as for LET (NS handling, side-effects, unordered 

– Additional problems: implicit operations (atomization, casts) 

define function f($x as xs:double) as xs:boolean 

{$x instance of xs:double} 

f(2)   

 

(2 instance of xs:double)                        NO 
 

• Make sure this rewriting is done after normalization 



34 

 

Constant folding 

• Place constant values where the result can already 
be determined at compile time 
 

for $x in  (1 to 10)                         for  $x in (1 to 10) 

where $x eq 3                               where $x eq 3 

return $x+1                                    return (3+1) 
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Constant folding - counterexamples 

for $x in $input/a                for $x in $input/a 
where $x eq 3                        where $x eq 3                     
return <b>{$x}</b>                return <b>{3}</b> 
 
 
for $x in (1.0,2.0,3.0)  
where $x eq 1 
return ($x instance of xs:integer)  
 
 
for $x in (1.0,2.0,3.0) 
where $x eq 1  
return (1 instance of xs:integer) 
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Common Sub-expressions 

• Preliminary questions  
– Same expression ? 

– Same context ? 

– Error “equivalence” ? 

– Create the same new nodes? 
 

 

for $x in $input/a/b                          let $y := (1 idiv 0) 

where $x/c lt 3                                 for $x in $input/a/b 

return if ($x/c lt 2)                              where $x/c lt 3 

           then if ($x/c eq 1)                      return if($x/c lt 2) 

                   then (1 idiv 0)                               then if ($x/c eq 1) 

                   else $x/c+1                                             then $y 

           else   if($x/c eq 0)                                           else $x/c+1 

                     then (1 idiv 0)                               else if($x/c eq 0) 

                     else $x/c+2                                           then $y 

                                                                                    else $x/c+2 
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FLWR unnesting 

• Traditional database technique 
for $x in (for $y in $input/a/b              for $y in $input/a/b, 

                 where $y/c eq 3                      $x in $y/d 

                 return $y/d)                        where ($x/e eq 4) and ($y/c eq 3) 

where $x/e eq 4                                   return $x 

return $x 

• Problem simpler than in OQL/ODMG 

– No nested collections in XML 

• Order-by more complicated 

 
 



1/17/2012 

38 

FLWR unnesting (2) 

• Another traditional database technique 
for $x in $input/a/b                        for $x in $input/a/b, 

where $x/c eq 3                                 $y in $x/d 

return (for $y in $x/d)                    where ($x/e eq 4) and 

($y/c eq 3) 

            where $x/e eq 4                return $y 

             return $y) 
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Type-based rewritings 

• Increase the advantages of lazy evaluation 
– $input/a/b/c              ((($input/a)[1]/b[1])/c)[1] 

• Eliminate the need for expensive operations (e.g.,sort) 
– $input//a/b                 $input/c/d/a/b 

• Static dispatch for overloaded built-in functions  
– e.g. min, max, avg, arithmetics, comparisons 

– Maximizes the use of indexes 

• Elimination of no-operations 
– e.g. casts, atomization, effective boolean value 

• Choice of various run-time implementations for certain 

logical operations 
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Dealing with backwards navigation 

• Replace backwards navigation with forward axis 

 

for $x in $input/a/b                       for $y in $input/a, 

return <c>{$x/.., $x/d}</c>                   $x in $y/b 

                                                           return <c>{$y, $x/d}</c> 

 

for $x in $input/a/b 

return <c>{$x//e/..}</c>                           ?? 

 

• Enables streaming 

YES 
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More compiler support for efficient 

execution 

• Streaming vs. data materialization 

• Node identifiers handling 

• Document order handling 

• Scheduling for parallel execution 
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Detour/Background: Query Evaluation 

• Hard to discuss special algorithms 

– Strongly depend on algebra 

– Strongly depends on the data storage, APIs 
and indexing 
 

• Main issues: 

1. Streaming or materializing evaluations 

2. Lazy evaluation or not 
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Lazy Evaluation 

• Compute expressions on demand 

– compute results only if they are needed 

– requires a pull-based interface (e.g. iterators) 

• Example: 

declare function endlessOnes() as integer* 

 { (1, endlessOnes()) }; 

some $x in endlessOnes() satisfies $x eq 1 

• The result of this program should be:  true 
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Lazy Evaluation 

• Lazy Evaluation also good for SQL  

– e.g., nested queries 

• Particularly important for XQuery 

– existential, universal quantification (often implicit) 

– top N, positional predicates 

– recursive functions (non terminating functions) 

– if then else expressions 

– match 

– correctness of rewritings, … 
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Stream-based Processing 

• Pipe input data through query operators 

– produce results before input is fully read 

– produce results incrementally 

– minimize the amount of memory required for the 
processing 

• Stream-based processing  

– online query processing, continuous queries 

– particularly important for XML message routing 

• Traditional in the database/SQL community 
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Stream based processing issues 

• Streaming burning questions : 
– push or pull ? 

– Granularity of streaming ? Byte, event, item  ? 

– Streaming with flexible granularity ? 

• Pure streaming ? 
– Processing XQuery needs some data materialization 

– Compiler support to detect and minimize data 
materialization 

• Notes: 
– Streaming + Lazy Evaluation possible 

– Partial Streaming possible/necessary 
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When should we materialize? 

• Pipeline breakders operators (e.g. sort) 

• Other conditions: 

– Whenever a variable is used multiple times 

– Whenever a variable is used as part of a loop 

– Whenever the content of a variable is given as 
input to a recursive function 

– In case of backwards navigation 

• Those are the ONLY cases 

• materialization can be partial and lazy 

• Compiler can detect  via dataflow analysis 
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How to minimize the use of node IDs? 

• Node identifiers are required by the XQuery 
Data model but onerous (time, space) 

• Solution: 

1.Decouple the node construction operation from 
the node id generation operation 

2.Generate node ids only if really needed 
• Only if the query contains (after optimization) operators 

that need node identifiers (e.g. sort by doc order, is, 
parent, <<) OR node identifiers are required for the 
result (e.g., XQuery Update Facility) 

• Compiler support: dataflow analysis 



49 

 

How can we deal with Xpath? 

• Sorting by document order and duplicate 
elimination required by the XQuery 
semantics but very expensive 

• Semantic conditions  
– $document / a / b / c 

• Guaranteed to return results in doc order and not to 
have duplicates 

– $document / a // b 
• Guaranteed to return results in doc order and not to 

contain duplicates 

– $document // a / b 
• NOT guaranteed to return results in doc order but 

guaranteed not to contain duplicates 

– $document // a // b                 $document / a / .. / b 
• Nothing can be said in general 
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Parallel execution 

 
ns1:WS1($input)+ns2:WS2($input) 

 
for $x in (1 to 10) 
return ns:WS($i) 

 
• Certain expressions can be executed in parallel 

– Scheduling based on data dependency 

• Parallelism within a single expression 

– Horizontal and vertical partitioning  

• errors and paralellism is tricky 
– in particular for side-effecting expressions 
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XQuery expression analysis (1) 

• How many times expression uses a variable? 
– potential for common subexpression factorization 

• Does expression use variable in loop? 
– limits unfolding 

• Is an expression a map on a certain variable? 
– great for parallelization 

• Does expression return results in doc order? 
– eliminate unnecessary sorts 

• Does expression return distinct nodes? 
– eliminate unnecessary duplicate-elims 
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XQuery expression analysis (2) 

• Is an expression a “function”? 
• Can the result of an expression contain 

newly created nodes ? 
• Is the evaluation of an expression context-

sensitive ? 
• Can an expression raise user errors ? 
• Is a sub expression of an expression 

guaranteed to be executed ? 
• Etc. 
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Compiling XQuery vs. XSLT 

• Empiric assertion : it depends on the entropy 

level in the data (see M. Champion xml-dev): 
– XSLT easier to use if the shape of the data is totally unknown 

(entropy high) 

– XQuery easier to use if the shape of the data is known (entropy 

low) 

• Dataflow analysis possible in XQuery,  

much harder in XSLT 
– Static typing, error detection, lots of optimizations 

• Conclusion: less entropy means more potential 

for optimization, unsurprisingly. 


