Module 4

Implementation of XQuery

Part 0: Background on relational query processing

The Data Management Universe

What does a Database System do?

- Input: SQL statement
- Output: {tuples}
- 1. Translate SQL into get/put requests to backend storage
- 2. Extract, process, transform tuples from blocks
- Tons of optimizations
 - Efficient algorithms for SQL operators (hashing, sorting)
 - Layout of data on backend storage (clustering, free space)
 - Ordering of operators (small intermediate results)
 - Semantic rewritings of queries
 - Buffer management and caching
 - Parallel execution and concurrency
 - Outsmart the OS
 - Partitioning and Replication in distributed system
 - Indexing and Materialization
 - Load and admission control
- + Security + Durability + Concurrency Control + Tools

XQuery: a mix of paradigms

- Query languages (~SQL)
- Functional programming languages (~Haskell)
- Object-oriented query languages (~OQL)
- Procedural languages (~Java)
- Some new features: context sensitive semantics
- Processing XQuery involves
 - stealing from <u>all</u> other languages
 - plus specific innovations

XQuery processing: old and new

Functional programming

- ☑ Environment for expressions
- Expressions nested with full generality
- ✓ Lazy evaluation
- Data Model, schemas, type system, and query language
- Contextual semantics for expressions
- Side effects
- Non-determinism in logic operations, others
- Streaming execution
- Logical/physical data mismatch, appropriate optimizations

Relational query (SQL)

- ☑ High level construct (FLWOR/Select-From-Where)
- ✓ Streaming execution
- Logical/physical data mismatch and the appropriate optimizations
- ▶ Data Model, schemas, type system, and query language
- Expressive power
- Error handling
- 2 valued logic

XQuery processing: old and new

Object-oriented query languages (OQL)

- Expressions nested with full generality
- ✓ Nodes with node/object identity
- Topological order for nodes
- Data Model, schemas, type system, and query language
- Side effects
- Streaming execution

Imperative languages (e.g. Java)

- ✓ Side effects
- Error handling
- Data Model, schemas, type system, and query language
- Non-determinism for logic operators
- Lazy evaluation and streaming
- Logical/physical data mismatch and the appropriate optimizations
- Possibility of handling large volumes of data

Aspects of XQuery Implementation

- Compile Time + Optimizations
 - Operator Models
 - Query Rewrite
 - Runtime + Query Execution
- XML Data Representation
 - XML Storage
 - XML Indexes
 - Compression + Binary XML

XQuery Processing Model

Architecture of (X)Query Processor

Backgrounds from the database world

- Database management systems provides
 - a success story for building large-data, declarative infrastructures
 - Blueprints on architecture and algorithms
- No class at Uni Freiburg (explicitly) teaches these contents (as opposed to e.g., compiler construction etc)
- Quick tour through relational concepts:
 - Algebra
 - Query Processing
 - Optimization

SQL -> Relational Algebra

SQL

Relational Algebra

select A_1 , ..., A_n from R_1 , ..., R_k where P_i

Algorithms for Rel. Algebra

- Table Access
 - scan (load each page at a time)
 - index scan (if index available)
- Sorting
 - Two-phase external sorting
- Joins
 - (Block) nested-loops
 - Index nested-loops
 - Sort-Merge
 - Hashing (many variants)
- Group-by (~ self-join)
 - Sorting, Hashing

SQL Query Processing 101

Iterator Model

- Plan contains many operators
 - Implement each operator indepently
 - Define generic interface for each operator
 - Each operator implemented by an iterator
- Three methods implemented by each iterator
 - open(): initialize the internal state (e.g., buffer)
 - char* next(): produce the next result tuple
 - close(): clean-up (e.g., release buffer)
- N.B. Modern DBMS use a Vector Model
 - next() returns a set of tuples
 - Why is that better?

Iterators: Easy & Costly

Principle

- data flows bottom up in a plan (i.e. operator tree)
- control flows top down in a plan

Advantages

- generic interface for all operators: great information hiding
- easy to implement iterators (clear what to do in any phase)
- works well with JDBC and embedded SQL
- supports DBmin and other buffer management strategies
- no overheads in terms of main memory
- supports pipelining: great if only subset of results consumed
- supports parallelism and distribution: add special iterators

Disadvantages

- high overhead of method calls
- poor instruction cache locality

Compiler: Optimizations

Goals:

- 1. Reduce the *level of abstraction*
- 2. Reduce the *execution cost*

Concepts

- Code representation (e.g., algebras)
- Code transformations (e.g., rules)
- Cost transformation policy (e.g., enumeration)
- Code cost estimation

SQL -> Relational Algebra

SQL

Relational Algebra

select A_1 , ..., A_n from R_1 , ..., R_k where P_i

SQL -> QGM

SQL QGM

select a

from R

where a in (select b

from S);

Parser

- Generates rel. alg. tree for each sub-query
 - constructs graph of trees: Query Graph Model nodes are subqueries
 - edges represent relationships between subqueries
- Extended rel. algebra because SQL more than RA
 - GROUP BY: Γ operator
 - ORDER BY: sort operator
 - DISTINCT: can be implemented with Γ operator

SQL -> Relational Algebra

SQL

Relational Algebra

select A_1 , ..., A_n from R_1 , ..., R_k where P_i

Example: SQL -> Relational Algebra

select Title from Professor, Lecture where Name = 'Popper' and 4 PersNr = Reader π_{Title} Name = 'Popper' and PersNr=Reader Lecture **Professor**

First Optimization: Push-down σ

select Title from Professor, Lecture where Name = 'Popper' and 4 PersNr = Reader **σ**_{PersNr=Reader} Lecture σ_{Name = 'Popper'} **Professor**

Push-down π

select Title from Professor, Lecture π_{Title} where Name = 'Popper' and PersNr = Reader **σ**_{PersNr=Reader} π_{PersNr} π_{Title,Reader} Lecture **σ**_{Name = 'Popper'} **Professor**

Correctness: Push-down π

```
• \pi_{\text{Title}} (\sigma_{\text{PersNr}=\text{Reader}} ((\sigma_{\text{Name} = 'Popper'} \text{Professor}) \times \text{Lecture}))
       (composition of projections)
• \pi_{\text{Title}}(\pi_{\text{Title},\text{PersNr},\text{Reader}}(\sigma_{\dots}((\sigma_{\dots}\text{Professor}) \times \text{Lecture})))
       (commutativity of \pi and \sigma)
• \pi_{\text{Title}} (\sigma_{...} (\pi_{\text{Title,PersNr,Reader}} ((\sigma_{...} \text{Professor}) \times \text{Lecture})))
       (commutativity of \pi and \sigma)
• \pi_{\text{Title}} (\sigma_{\text{...}} (\pi_{\text{PersNr}} (\sigma_{\text{...}} \text{Professor}) \times \pi_{\text{Title,Reader}} (\text{Lecture})))
```

Push down π

- Correctness (see previous slide example generalizes)
- Why is it good? (almost same reason as for σ)
 - reduces size of intermediate results
 - but: only makes sense if results are materialized; e.g. sort
 - does not make sense if pointers are passed around in iterators

Third Optimization: $\sigma + x = \bowtie$

select Title
from Professor, Lecture
where Name = 'Popper' and
 PersNr = Reader

Third Optimization: $\sigma + x = \bowtie$

- Correctness by definition of ⋈ operator
- Why is this good?
 - x always done using nested-loops algorithm
 - \bowtie can also be carried out using hashing, sorting, index support
 - choice of better algorithm may result in huge wins
 - x produces large intermediate results
 - results in a huge number of "next()" calls in iterator model
 - method calls are expensive
- Selection, projection push-down are no-brainers
 - make sense whenever applicable
 - do not need a cost model to decide how to apply them
 - (exception: expensive selections, projections with UDF)
 - done in a phase called query rewrite, based on rules
- More complex query rewrite rules...

Unnesting of Views

Example: Unnesting of Views

```
select A.x
from A
where y in
(select y from B)
```

select A.x from A, B where A.y = B.y

Example: Unnesting of Views

```
select A.x
from A
where exists
(select * from B where A.y = B-y)
```

select A.x from A, B where A.y = B.y

- Is this correct? Why is this better?
 - (not trivial at all!!!)

Query Rewrite

 Example: Predicate Augmentation select * from A, B, C where A.x = B.x and B.x = C.x

select *
from A, B, Cwhere A.x = B.xand B.x = C.xand A.x = C.x

Why is that useful?

Pred. Augmentation: Why good?

A (odd numbers)

 x
 1
 3
 5

B (all numbers)

 x
 1
 2
 3

C (even numbers)

 x
 2
 4
 6

- Cost((A \bowtie C) \bowtie B) < Cost((A \bowtie B) \bowtie C)
 - get second join for free
- Query Rewrite does not know that, ...
 - but it knows that it might happen and hopes for optimizer...
- Codegen gets rid of unnecessary predicates (e.g., A.x = B.x)

Query Optimization

Two tasks

- Determine order of operators
- Determine algorithm for each operator (hash vs sort)
- Components of a query optimizer
 - Search space
 - Cost model
 - Enumeration algorithm
- Working principle
 - Enumerate alternative plans
 - Apply cost model to alternative plans
 - Select plan with lowest expected cost

Query Opt.: Does it matter?

- A x B x C
 size(A) = 10,000
 size(B) = 100
 size(C) = 1
 cost(X x Y) = size(X) + size(Y)
- $cost((A \times B) \times C) = 1,010,001$ - $cost(A \times B) = 10,100$ - $cost(X \times C) = 1,000,001$ with $X = A \times B$
- $cost(A \times (B \times C)) = 10,201$ $- cost(B \times C) = 101$ $- cost(A \times X) = 10,100$ with $X = B \times C$

Query Opt.: Does it matter?

- A x B x C
 - size(A) = 1000
 - $-\operatorname{size}(B) = 1$
 - $-\operatorname{size}(C) = 1$
 - $-\cot(X \times Y) = \operatorname{size}(X) * \operatorname{size}(Y)$
- $cost((A \times B) \times C) = 2000$
 - $\cot(A \times B) = 1000$
 - $-\cot(X \times C) = 1000$ with $X = A \times B$
- cost $(A \times (B \times C)) = 1001$
 - $-\cos(B \times C) = 1$
 - $-\cot(A \times X) = 1000$ with $X = B \times C$

Search Space: Rel. Algebra

Associativity of joins:

$$(A \bowtie B) \bowtie C = A \bowtie (B \bowtie C)$$

• Commutativity of joins:

$$A \bowtie B = B \bowtie A$$

- Many more rules
 - see Kemper/Eickler or Garcia-Molina text books
- What is better: A ⋈ B or B ⋈ A?
 - it depends
 - need cost model to make decision

Search Space: Group Bys

SELECT ... FROM R, S WHERE R.a = S.a GROUP BY R.a, S.b;

- • $\Gamma_{\text{R.a, S.b}}(\mathsf{R}\bowtie\mathsf{S})$
- • $\Gamma_{S,b}(\Gamma_{R,a}(R)\bowtie S)$

- Often, many possible ways to split & move group-bys
 - again, need cost model to make right decisions

Cost Model

Cost Metrics

- Response Time (consider parallelism)
- Resource Consumption: CPU, IO, network
- \$ (often equivalent to resource consumption)

Principle

- Understand algorithm used by each operator (sort, hash, ...)
 - estimate available main memory buffers
 - estimate the size of inputs, intermediate results
- Combine cost of operators:
 - sum for resource consumption
 - max for response time (but keep track of bottlenecks)

Uncertainties

- estimates of buffers, interference with other operators
- estimates of intermediate result size (histograms)

Equi-Width Histogram

SELECT * FROM person WHERE 25 < age < 40;

Equi-Depth Histogram

SELECT * FROM person WHERE 25 < age < 40;

Multi-Dimensional Histogram

SELECT * FROM person WHERE 25 < age < 40 AND salary > 200;

Enumeration Algorithms

- Query Optimization is NP hard
 - even ordering or Cartesian products is NP hard
 - in general impossible to predict complexity for given query
- Overview of Algorithms
 - Dynamic Programming (good plans, exp. complexity)
 - Greedy heuristics (e.g., highest selectivity join first)
 - Randomized Algorithms (iterative improvement, Sim.An., ...)
 - Other heuristics (e.g., rely on hints by programmer)
 - Smaller search space (e.g., deep plans, limited group-bys)

Products

- Dynamic Programming used by many systems
- Some systems also use greedy heuristics in addition