
Module 4

Implementation of XQuery

Part 0: Background on relational query processing

The Data Management Universe

Lecture Part I Lecture Part 2
2

What does a Database System do?
Input: SQL statement

Output: {tuples}

1. Translate SQL into get/put requests to backend storage

2. Extract, process, transform tuples from blocks

Tons of optimizations
 Efficient algorithms for SQL operators (hashing, sorting)

 Layout of data on backend storage (clustering, free space)

Ordering of operators (small intermediate results)

 Semantic rewritings of queries

 Buffer management and caching

 Parallel execution and concurrency

Outsmart the OS

 Partitioning and Replication in distributed system

 Indexing and Materialization

 Load and admission control

+ Security + Durability + Concurrency Control + Tools
3

4

XQuery: a mix of paradigms

• Query languages (~SQL)

• Functional programming languages (~Haskell)

• Object-oriented query languages (~OQL)

• Procedural languages (~Java)

• Some new features : context sensitive semantics

• Processing XQuery involves
– stealing from all other languages

– plus specific innovations

5

XQuery processing: old and new

Functional programming
 Environment for expressions
 Expressions nested with full

generality
 Lazy evaluation
 Data Model, schemas, type

system, and query language
 Contextual semantics for

expressions
 Side effects
 Non-determinism in logic

operations, others
 Streaming execution
 Logical/physical data

mismatch, appropriate
optimizations

Relational query (SQL)
 High level construct

(FLWOR/Select-From-Where)

 Streaming execution

 Logical/physical data
mismatch and the appropriate
optimizations

 Data Model, schemas, type
system, and query language

 Expressive power

 Error handling

 2 valued logic

6

XQuery processing: old and new

Object-oriented query
languages (OQL)

 Expressions nested with full
generality

 Nodes with node/object
identity

 Topological order for nodes

 Data Model, schemas, type
system, and query language

 Side effects

 Streaming execution

Imperative languages (e.g.
Java)

 Side effects

 Error handling

 Data Model, schemas, type
system, and query language

 Non-determinism for logic
operators

 Lazy evaluation and
streaming

 Logical/physical data
mismatch and the appropriate
optimizations

 Possibility of handling large
volumes of data

7

Aspects of XQuery Implementation

• Compile Time + Optimizations

– Operator Models

– Query Rewrite

– Runtime + Query Execution

• XML Data Representation

– XML Storage

– XML Indexes

– Compression + Binary XML

XQuery Processing Model

8

9

Architecture of (X)Query Processor

Parsing &

Verification

Code

 rewriting

Code

generation

Executable

 code

Query

Data access

 pattern (APIs)

Internal query/program

 representation

Lower level internal

query representation

Compilation

Backgrounds from the database world

• Database management systems provides
– a success story for building large-data, declarative

infrastructures
– Blueprints on architecture and algorithms

• No class at Uni Freiburg (explicitly) teaches these
contents (as opposed to e.g., compiler
construction etc)

• Quick tour through relational concepts:
– Algebra
– Query Processing
– Optimization

SQL -> Relational Algebra

SQL

select A1, ..., An

from R1, ..., Rk

where P;

 A1, ..., An(P (R1 x ... x Rk))

  A1, ..., An

P

x

x Rk

x R3

R2 R1

Relational Algebra

11

Algorithms for Rel. Algebra

• Table Access

– scan (load each page at a time)

– index scan (if index available)

• Sorting

– Two-phase external sorting

• Joins

– (Block) nested-loops

– Index nested-loops

– Sort-Merge

– Hashing (many variants)

• Group-by (~ self-join)

– Sorting, Hashing 12

13

SQL Query Processing 101

SELECT *

FROM Hotels h, Cities c

WHERE h.city = c.name;

Parser

&

Query Optimizer

<Ritz, Paris, ...>

<Baur au Lac, Zurich, ...>

<Edgewater, Madison, ...>

Scan(Hotels)

Hash Join

Scan(Cities)

Execution Engine

plan

Catalogue Indexes & Base Data

Schema info,

DB statistics
<Ritz, ...>

...

<Paris, ...>

...

Iterator Model

• Plan contains many operators

– Implement each operator indepently

– Define generic interface for each operator

– Each operator implemented by an iterator

• Three methods implemented by each iterator

– open(): initialize the internal state (e.g., buffer)

– char* next(): produce the next result tuple

– close(): clean-up (e.g., release buffer)

• N.B. Modern DBMS use a Vector Model

– next() returns a set of tuples

– Why is that better? 14

Iterator Model at Work

15

R S T

scan scan scan

NLJoin

NLJoin

Application

Iterator Model at Work

16

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: execute()

Iterator Model at Work

17

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: execute()

open()

Iterator Model at Work

18

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: execute()

open()

open()

open()

Iterator Model at Work

19

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: execute()

open()

open()

open/close for
each R tuple

Iterator Model at Work

20

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: execute()

open()

open/close for
each R,S tuple

Iterator Model at Work

21

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

next()

next()

Iterator Model at Work

22

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

next()

r1

Iterator Model at Work

23

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

next()

r1

open()

Iterator Model at Work

24

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

next()

r1

next()

Iterator Model at Work

25

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

next()

r1

s1

Iterator Model at Work

26

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

next()

r1

next()

Iterator Model at Work

27

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

next()

r1

s2

Iterator Model at Work

28

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

r1, s2

Iterator Model at Work

29

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

r1, s2

open()

Iterator Model at Work

30

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

r1, s2

next()

Iterator Model at Work

31

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

next()

r1, s2

t1

Iterator Model at Work

32

R S T

scan scan scan

NLJoin

NLJoin

Application JDBC: next()

r1, s2, t1

… r2, r3, … … s3, s4, … … t2, t3, …

Iterators: Easy & Costly

• Principle

– data flows bottom up in a plan (i.e. operator tree)

– control flows top down in a plan

• Advantages

– generic interface for all operators: great information hiding

– easy to implement iterators (clear what to do in any phase)

– works well with JDBC and embedded SQL

– supports DBmin and other buffer management strategies

– no overheads in terms of main memory

– supports pipelining: great if only subset of results consumed

– supports parallelism and distribution: add special iterators

• Disadvantages

– high overhead of method calls

– poor instruction cache locality
33

34

Compiler: Optimizations

• Goals:

1. Reduce the level of abstraction

2. Reduce the execution cost

• Concepts

– Code representation (e.g., algebras)

– Code transformations (e.g., rules)

– Cost transformation policy (e.g., enumeration)

– Code cost estimation

SQL -> Relational Algebra

SQL

select A1, ..., An

from R1, ..., Rk

where P;

 A1, ..., An(P (R1 x ... x Rk))

  A1, ..., An

P

x

x Rk

x R3

R2 R1

Relational Algebra

35

SQL -> QGM

SQL

select a

from R

where a in (select b

 from S);

QGM

R

a



b

S

in

36

Parser

• Generates rel. alg. tree for each sub-query

– constructs graph of trees: Query Graph Model
nodes are subqueries

– edges represent relationships between subqueries

• Extended rel. algebra because SQL more than RA

– GROUP BY: G operator

– ORDER BY: sort operator

– DISTINCT: can be implemented with G operator

37

SQL -> Relational Algebra

SQL

select A1, ..., An

from R1, ..., Rk

where P;

 A1, ..., An(P (R1 x ... x Rk))

  A1, ..., An

P

x

x Rk

x R3

R2 R1

Relational Algebra

38

39

Example: SQL -> Relational

Algebra

select Title

from Professor, Lecture

where Name = ´Popper´ and

 PersNr = Reader

Professor Lecture



Name = ´Popper´ and PersNr=Reader

Title

Title (Name = ´Popper´ and PersNr=Reader (Professor  Lecture))

40

First Optimization: Push-down 

select Title

from Professor, Lecture

where Name = ´Popper´ and

 PersNr = Reader

Professor

Lecture



PersNr=Reader

Title

Title (PersNr=Reader ((Name = ´Popper´ Professor)  Lecture))

Name = ´Popper´

41

Push-down 
select Title

from Professor, Lecture

where Name = ´Popper´ and

 PersNr = Reader

Professor

Lecture



PersNr=Reader

Title

Name = ´Popper´

PersNr Title,Reader

Correctness: Push-down 

• Title (PersNr=Reader ((Name = ´Popper´ Professor)  Lecture))

(composition of projections)

• Title (Title,PersNr,Reader (… ((…Professor)  Lecture)))

(commutativity of  and )

• Title (… (Title,PersNr,Reader ((…Professor)  Lecture)))

(commutativity of  and )

• Title (… (PersNr (…Professor)  Title,Reader (Lecture)))

42

Push down 

• Correctness (see previous slide – example
generalizes)

• Why is it good? (almost same reason as for )

– reduces size of intermediate results

– but: only makes sense if results are
materialized; e.g. sort

• does not make sense if pointers are passed around
in iterators

43

44

Third Optimization:  + x = A

select Title

from Professor, Lecture

where Name = ´Popper´ and

 PersNr = Reader

Professor

Lecture

A

Title

Name = ´Popper´

PersNr Title,Reader

Third Optimization:  + x = A

• Correctness by definition of A operator

• Why is this good?
– x always done using nested-loops algorithm

• A can also be carried out using hashing, sorting, index support

• choice of better algorithm may result in huge wins

– x produces large intermediate results
• results in a huge number of „next()“ calls in iterator model
• method calls are expensive

• Selection, projection push-down are no-brainers
– make sense whenever applicable
– do not need a cost model to decide how to apply them
– (exception: expensive selections, projections with UDF)
– done in a phase called query rewrite, based on rules

• More complex query rewrite rules…
45

Unnesting of Views

• Example: Unnesting of Views
select A.x
from A
where y in
 (select y from B)

• Example: Unnesting of Views

select A.x
from A
where exists
 (select * from B where A.y = B-y)

• Is this correct? Why is this better?
– (not trivial at all!!!)

select A.x
from A, B
where A.y = B.y

46

select A.x
from A, B
where A.y = B.y

Query Rewrite

• Example: Predicate Augmentation

 select *
 from A, B, C
 where A.x = B.x
 and B.x = C.x

 select *
 from A, B, C
 where A.x = B.x
 and B.x = C.x
 and A.x = C.x Why is that useful?

47

Pred. Augmentation: Why good?

… x

… 1

… 3

… 5

… …

48

A (odd numbers)

… x

… 1

… 2

… 3

… …

B (all numbers)

… x

… 2

… 4

… 6

… …

C (even numbers)

• Cost((A A C) A B) < Cost((A A B) A C)

• get second join for free

• Query Rewrite does not know that, …

• but it knows that it might happen and hopes for optimizer…

• Codegen gets rid of unnecessary predicates (e.g., A.x = B.x)

Query Optimization

• Two tasks

– Determine order of operators

– Determine algorithm for each operator (hash vs sort)

• Components of a query optimizer

– Search space

– Cost model

– Enumeration algorithm

• Working principle

– Enumerate alternative plans

– Apply cost model to alternative plans

– Select plan with lowest expected cost
49

Query Opt.: Does it matter?

• A x B x C
– size(A) = 10,000
– size(B) = 100
– size(C) = 1
– cost(X x Y) = size(X) + size(Y)

• cost((A x B) x C) = 1,010,001

– cost(A x B) = 10,100
– cost(X x C) = 1,000,001 with X = A x B

• cost (A x (B x C)) = 10,201

– cost(B x C) = 101
– cost(A x X) = 10,100 with X = B x C
 50

Query Opt.: Does it matter?

• A x B x C
– size(A) = 1000
– size(B) = 1
– size(C) = 1
– cost(X x Y) = size(X) * size(Y)

• cost((A x B) x C) = 2000

– cost(A x B) = 1000
– cost(X x C) = 1000 with X = A x B

• cost (A x (B x C)) = 1001

– cost(B x C) = 1
– cost(A x X) = 1000 with X = B x C

51

Search Space: Rel. Algebra

• Associativity of joins:
(A A B) A C = A A (B A C)

• Commutativity of joins:
A A B = B A A

• Many more rules
– see Kemper/Eickler or Garcia-Molina text books

• What is better: A A B or B A A?

– it depends
– need cost model to make decision

52

Search Space: Group Bys

SELECT … FROM R, S WHERE R.a = S.a GROUP
BY R.a, S.b;

•GR.a, S.b(R A S)

•GS.b(GR.a(R) A S)

•Often, many possible ways to split & move group-bys

– again, need cost model to make right decisions
53

Cost Model

• Cost Metrics
– Response Time (consider parallelism)
– Resource Consumption: CPU, IO, network
– $ (often equivalent to resource consumption)

• Principle
– Understand algorithm used by each operator (sort,

hash, …)
• estimate available main memory buffers
• estimate the size of inputs, intermediate results

– Combine cost of operators:
• sum for resource consumption
• max for response time (but keep track of bottlenecks)

• Uncertainties
– estimates of buffers, interference with other operators
– estimates of intermediate result size (histograms)

54

Equi-Width Histogram

55

SELECT * FROM person WHERE 25 < age < 40;

Equi-Depth Histogram

0

10

20

30

40

50

60

20 bis 42 42 bis 48 48 bis 53 53 bis 59 59 bis 70

56

SELECT * FROM person WHERE 25 < age < 40;

Multi-Dimensional Histogram

0

10

20

30

40

50

60

20 bis 30 30 bis 40 40 bis 50 50 bis 60 60 bis 70

70-100

100-150

150-250

57

SELECT * FROM person

WHERE 25 < age < 40 AND salary > 200;

 ;

Enumeration Algorithms

• Query Optimization is NP hard

– even ordering or Cartesian products is NP hard

– in general impossible to predict complexity for given query

• Overview of Algorithms

– Dynamic Programming (good plans, exp. complexity)

– Greedy heuristics (e.g., highest selectivity join first)

– Randomized Algorithms (iterative improvement, Sim.An., …)

– Other heuristics (e.g., rely on hints by programmer)

– Smaller search space (e.g., deep plans, limited group-bys)

• Products

– Dynamic Programming used by many systems

– Some systems also use greedy heuristics in addition

58

