
Module 4 

 

Implementation of XQuery 

 
Part 0: Background on relational query processing 



The Data Management Universe 

Lecture Part I Lecture Part 2 
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What does a Database System do? 
Input:  SQL statement 

Output:  {tuples} 

1. Translate SQL into get/put requests to backend storage 

2. Extract, process, transform tuples from blocks 

Tons of optimizations 
 Efficient algorithms for SQL operators (hashing, sorting) 

 Layout of data on backend storage (clustering, free space) 

Ordering of operators (small intermediate results) 

 Semantic rewritings of queries 

 Buffer management and caching 

 Parallel execution and concurrency 

Outsmart the OS 

 Partitioning and Replication in distributed system 

 Indexing and Materialization 

 Load and admission control 

+ Security + Durability + Concurrency Control + Tools 
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XQuery: a mix of paradigms 

• Query languages (~SQL) 

• Functional programming languages  (~Haskell) 

• Object-oriented query languages  (~OQL) 

• Procedural languages  (~Java) 

• Some new features : context sensitive semantics 

 

• Processing XQuery involves 
– stealing from all other languages 

– plus specific innovations 
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XQuery processing: old and new 

Functional programming 
 Environment for expressions 
 Expressions nested with full 

generality 
 Lazy evaluation 
 Data Model, schemas, type 

system, and query language  
 Contextual semantics for 

expressions 
 Side effects 
 Non-determinism in logic 

operations, others 
 Streaming execution 
 Logical/physical data 

mismatch, appropriate 
optimizations 

 

Relational query (SQL) 
 High level construct 

(FLWOR/Select-From-Where) 

 Streaming execution 

 Logical/physical data 
mismatch and the appropriate 
optimizations 

 Data Model, schemas, type 
system, and query language  

 Expressive power 

 Error handling 

  2 valued logic 
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XQuery processing: old and new 

Object-oriented query 
languages (OQL) 

 Expressions nested with full 
generality 

 Nodes with node/object 
identity 

 Topological order for nodes 

  Data Model, schemas, type 
system, and query language 

 Side effects 

 Streaming execution 
 

 

Imperative languages (e.g. 
Java) 

 Side effects 

 Error handling 

 Data Model, schemas, type 
system, and query language 

 Non-determinism for logic 
operators 

 Lazy evaluation and 
streaming 

 Logical/physical data 
mismatch and the appropriate 
optimizations 

 Possibility of handling large 
volumes of data 
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Aspects of XQuery Implementation 

• Compile Time + Optimizations 

– Operator Models 

– Query Rewrite 

– Runtime + Query Execution 

• XML Data Representation  

– XML Storage 

– XML Indexes 

– Compression + Binary XML 



XQuery Processing Model 
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Architecture of (X)Query Processor 

Parsing & 

Verification 

Code 

 rewriting 

Code 

generation 

Executable 

 code 

Query 

Data access 

 pattern (APIs) 

Internal query/program 

 representation 

Lower level internal  

query representation 

Compilation 



Backgrounds from the database world 

• Database management systems provides  
– a success story for building large-data, declarative 

infrastructures 
– Blueprints on architecture and algorithms 

• No class at Uni Freiburg (explicitly) teaches these 
contents (as opposed to e.g., compiler 
construction etc) 

• Quick tour through relational concepts: 
– Algebra 
– Query Processing 
– Optimization 

 



SQL -> Relational Algebra 

 
SQL 

 

 

 

select A1, ..., An 

from R1, ..., Rk 

where P; 

 

 A1, ..., An(P (R1 x ... x Rk )) 

  A1, ..., An 

 

P 

x 

x Rk 

x R3 

R2 R1 

Relational Algebra 
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Algorithms for Rel. Algebra 

• Table Access 

– scan  (load each page at a time)  

– index scan   (if index available) 

• Sorting 

– Two-phase external sorting 

• Joins 

– (Block) nested-loops 

– Index nested-loops 

– Sort-Merge 

– Hashing (many variants) 

• Group-by  (~ self-join) 

– Sorting, Hashing 12 
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SQL Query Processing 101 

SELECT  * 

FROM      Hotels h, Cities c 

WHERE   h.city = c.name;  

Parser 

& 

Query Optimizer 

<Ritz, Paris, ...> 

<Baur au Lac, Zurich, ...> 

<Edgewater, Madison, ...> 

Scan(Hotels) 

Hash Join 

Scan(Cities) 

Execution Engine 

plan 

Catalogue Indexes & Base Data 

Schema info, 

DB statistics 
<Ritz, ...> 

... 

<Paris, ...> 

... 



Iterator Model 

• Plan contains many operators 

– Implement each operator indepently 

– Define generic interface for each operator 

– Each operator implemented by an iterator 

• Three methods implemented by each iterator 

– open(): initialize the internal state (e.g., buffer) 

– char* next(): produce the next result tuple 

– close(): clean-up (e.g., release buffer) 

• N.B. Modern DBMS use a Vector Model 

– next() returns a set of tuples 

– Why is that better? 14 



Iterator Model at Work 

15 

R S T 

scan scan scan 

NLJoin 

NLJoin 

Application 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: execute() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: execute() 

open() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: execute() 

open() 

open() 

open() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: execute() 

open() 

open() 

open/close for 
each R tuple 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: execute() 

open() 

open/close for 
each R,S tuple 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

next() 

next() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

next() 

r1 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

next() 

r1 

open() 



Iterator Model at Work 
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scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

next() 

r1 

next() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

next() 

r1 

s1 



Iterator Model at Work 
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scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

next() 

r1 

next() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

next() 

r1 

s2 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

r1, s2 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

r1, s2 

open() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

r1, s2 

next() 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

next() 

r1, s2 

t1 



Iterator Model at Work 
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R S T 

scan scan scan 

NLJoin 

NLJoin 

Application JDBC: next() 

r1, s2, t1 

… r2, r3, … … s3, s4, … … t2, t3, … 



Iterators: Easy & Costly 

• Principle 

– data flows bottom up in a plan (i.e. operator tree) 

– control flows top down in a plan 

• Advantages 

– generic interface for all operators: great information hiding 

– easy to implement iterators (clear what to do in any phase) 

– works well with JDBC and embedded SQL 

– supports DBmin and other buffer management strategies 

– no overheads in terms of main memory 

– supports pipelining: great if only subset of results consumed 

– supports parallelism and distribution: add special iterators 

• Disadvantages 

– high overhead of method calls 

– poor instruction cache locality 
33 
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Compiler: Optimizations 

• Goals:  

1. Reduce the level of abstraction 

2. Reduce the execution cost  

• Concepts 

– Code representation (e.g., algebras) 

– Code transformations (e.g., rules) 

– Cost transformation policy (e.g., enumeration) 

– Code cost estimation 



SQL -> Relational Algebra 

 

SQL 

 

 

 

select A1, ..., An 

from R1, ..., Rk 

where P; 

 

 A1, ..., An(P (R1 x ... x Rk )) 

  A1, ..., An 

 

P 

x 

x Rk 

x R3 

R2 R1 

Relational Algebra 
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SQL -> QGM 

 

SQL 

 

 

 

select a 

from R 

where a in (select b 

  from S); 

 

 

QGM 

R 

a 

 

b 

S 

in 
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Parser 

• Generates rel. alg. tree for each sub-query 

– constructs graph of trees: Query Graph Model 
nodes are subqueries 

– edges represent relationships between subqueries 

• Extended rel. algebra because SQL more than RA 

– GROUP BY: G operator 

– ORDER BY: sort operator 

– DISTINCT: can be implemented with G operator 
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SQL -> Relational Algebra 

 

SQL 

 

 

 

select A1, ..., An 

from R1, ..., Rk 

where P; 

 

 A1, ..., An(P (R1 x ... x Rk )) 

  A1, ..., An 

 

P 

x 

x Rk 

x R3 

R2 R1 

Relational Algebra 
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Example: SQL -> Relational 

Algebra 

select Title 

from Professor, Lecture 

where Name = ´Popper´ and  

            PersNr = Reader 

Professor Lecture 

 

Name = ´Popper´ and PersNr=Reader  

 

Title 

Title (Name = ´Popper´ and PersNr=Reader (Professor  Lecture)) 
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First Optimization: Push-down  

select Title  

from Professor, Lecture 

where Name = ´Popper´ and  

            PersNr = Reader 

Professor 

Lecture 

 

PersNr=Reader 

Title 

Title (PersNr=Reader ((Name = ´Popper´ Professor)  Lecture)) 

Name = ´Popper´ 
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Push-down  
select Title  

from Professor, Lecture 

where Name = ´Popper´ and  

            PersNr = Reader 

Professor 

Lecture 

 

PersNr=Reader 

Title 

Name = ´Popper´ 

PersNr Title,Reader  



Correctness: Push-down  

• Title (PersNr=Reader ((Name = ´Popper´ Professor)  Lecture)) 
 
(composition of projections) 

• Title (Title,PersNr,Reader (… ((…Professor)  Lecture))) 
 
(commutativity of  and ) 

• Title (… (Title,PersNr,Reader ((…Professor)  Lecture))) 
 
(commutativity of  and ) 

• Title (… (PersNr (…Professor)  Title,Reader (Lecture))) 
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Push down  

• Correctness (see previous slide – example 
generalizes) 

 

• Why is it good?  ( almost same reason as for ) 

– reduces size of intermediate results 

– but: only makes sense if results are 
materialized; e.g. sort 

• does not make sense if pointers are passed around 
in iterators 

43 
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Third Optimization:  + x = A  

select Title  

from Professor, Lecture 

where Name = ´Popper´ and  

            PersNr = Reader 

Professor 

Lecture 

A 

Title 

Name = ´Popper´ 

PersNr Title,Reader  



Third Optimization:  + x = A  

• Correctness by definition of A  operator 

• Why is this good? 
– x always done using nested-loops algorithm 

• A can also be carried out using hashing, sorting, index support 

• choice of better algorithm may result in huge wins 

– x produces large intermediate results 
• results in a huge number of „next()“ calls in iterator model 
• method calls are expensive  

• Selection, projection push-down are no-brainers 
– make sense whenever applicable 
– do not need a cost model to decide how to apply them 
– (exception: expensive selections, projections with UDF) 
– done in a phase called query rewrite, based on rules 

• More complex query rewrite rules… 
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Unnesting of Views 

• Example: Unnesting of Views 
select A.x 
from   A 
where y in  
 (select y from B) 

 
• Example: Unnesting of Views 

select A.x 
from   A 
where exists 
 (select * from B where A.y = B-y) 
 

• Is this correct? Why is this better? 
– (not trivial at all!!!) 

 
 
 
 
 

select A.x 
from   A, B 
where A.y = B.y 
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select A.x 
from   A, B 
where A.y = B.y 



Query Rewrite 

• Example: Predicate Augmentation 

 select * 
 from   A, B, C 
 where  A.x = B.x 
  and B.x = C.x 
 
 
 
 select * 
 from   A, B, C 
 where  A.x = B.x   
  and B.x = C.x 
  and A.x = C.x Why is that useful? 

47 



Pred. Augmentation: Why good? 

… x 

… 1 

… 3 

… 5 

… … 
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A (odd numbers) 

… x 

… 1 

… 2 

… 3 

… … 

B (all numbers) 

… x 

… 2 

… 4 

… 6 

… … 

C (even numbers) 

• Cost((A A C) A B) < Cost((A A B) A C) 

• get second join for free 

• Query Rewrite does not know that, … 

• but it knows that it might happen and hopes for optimizer… 

• Codegen gets rid of unnecessary predicates (e.g., A.x = B.x) 



Query Optimization 

• Two tasks 

– Determine order of operators 

– Determine algorithm for each operator (hash vs sort) 

• Components of a query optimizer 

– Search space 

– Cost model 

– Enumeration algorithm 

• Working principle 

– Enumerate alternative plans 

– Apply cost model to alternative plans 

– Select plan with lowest expected cost 
49 



Query Opt.: Does it matter? 

• A x B x C 
– size(A) = 10,000 
– size(B) = 100 
– size(C) = 1 
– cost(X x Y) = size(X) + size(Y) 

 
• cost( (A x B) x C) = 1,010,001 

– cost(A x B) = 10,100 
– cost(X x C) = 1,000,001   with X = A x B 

 
• cost ( A x (B x C)) = 10,201 

– cost(B x C) = 101 
– cost(A x X) = 10,100  with X = B x C  
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Query Opt.: Does it matter? 

• A x B x C 
– size(A) = 1000 
– size(B) = 1 
– size(C) = 1 
– cost(X x Y) = size(X) * size(Y) 

 
• cost( (A x B) x C) = 2000 

– cost(A x B) = 1000 
– cost(X x C) = 1000    with X = A x B 

 
• cost ( A x (B x C)) = 1001 

– cost(B x C) = 1 
– cost(A x X) = 1000   with X = B x C  
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Search Space: Rel. Algebra 

• Associativity of joins:   
(A A B) A C = A A (B A C) 
 

• Commutativity of joins:   
A A B = B A A 
 

• Many more rules 
– see Kemper/Eickler or Garcia-Molina text books 

 
• What is better:  A A B or B A A? 

– it depends 
– need cost model to make decision 
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Search Space: Group Bys 

SELECT … FROM R, S WHERE R.a = S.a GROUP 
BY R.a, S.b; 

 

•GR.a, S.b(R A S) 

 

•GS.b(GR.a(R) A S)  

 

•Often, many possible ways to split & move group-bys 

– again, need cost model to make right decisions 
53 



Cost Model 

• Cost Metrics 
– Response Time (consider parallelism) 
– Resource Consumption: CPU, IO, network 
– $  (often equivalent to resource consumption) 

• Principle 
– Understand algorithm used by each operator (sort, 

hash, …) 
• estimate available main memory buffers 
• estimate the size of inputs, intermediate results 

– Combine cost of operators:  
• sum for resource consumption 
• max for response time (but keep track of bottlenecks) 

• Uncertainties 
– estimates of buffers, interference with other operators 
– estimates of intermediate result size (histograms) 
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Equi-Width Histogram 
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SELECT * FROM person WHERE 25 < age < 40;  



Equi-Depth Histogram 
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SELECT * FROM person WHERE 25 < age < 40;  



Multi-Dimensional Histogram 
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SELECT * FROM person  

WHERE 25 < age < 40 AND salary > 200; 

  ;  



Enumeration Algorithms 

• Query Optimization is NP hard  

– even ordering or Cartesian products is NP hard 

– in general impossible to predict complexity for given query 

• Overview of Algorithms 

– Dynamic Programming (good plans, exp. complexity) 

– Greedy heuristics (e.g., highest selectivity join first) 

– Randomized Algorithms (iterative improvement, Sim.An., …) 

– Other heuristics (e.g., rely on hints by programmer) 

– Smaller search space (e.g., deep plans, limited group-bys) 

• Products 

– Dynamic Programming used by many systems 

– Some systems also use greedy heuristics in addition 
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