Universitat Freiburg
Institut fiir Informatik

Prof. Dr. Peter Fischer
Lecture XML and Databases
Winter Semester 2011/12

Due date/discussion: 27.1.2012

Solution Sheet 10

XQuery Implementation and Optimisation

Exercise 1: Query plans: Implementation
The trees look as follows:

1.2. (From exercise sheet 7, exercise 1.4.)

1.1. (From exercise sheet 7, exercise 1.2.)

|
| mp= chemcen_startch Lol Marme: scwu URY mett

Ouderliylhenaios | | remmbings | | subiers

[Tope clomest s

st |
Crabifsrstor

LocalMare count LR sull

Bl

I ChibTterans
| Type: clemsent_stars() LicalNssse: seusce URI well

Chikiheraor

Varisbleheraos

| |
| e ebemera_stanih Luncal Name: destination LR wll | a

ﬁ
(V|
[en | oo 3em |

1.3. (From exercise sheet 6, exercise 1.3.)

FFLWORIterator

l sublters | [returnExpr I
L4 L
Forlterator XMLContent
$a 0
sublters
&
Tokenlterator XMLContent XMLContent Tokenlterator
res 1 1 res
4
Tokenlterator Variablelterator Tokenlterator Tokenlterator Tokenlterator
DataValueslterator Ci erator
name a name count count
[sublters ‘ | sublters | I sublters | sublters] | sublters | ‘ sublters I I sublters ‘
DescendantOrSelflterator r
FFLWORIterator
Type: element_start() LocalName: author URI null
Y A
sublters whereExpr l l returnExpr l
L4 A |
Forlterator Variablelterator
- - Booleanlterator - -
$.item:.item item:.item
sublters I sublters ‘ | sublters |
Tokenlterator DescendantOrSelfIterator Comparelterator
bib.xml Type: element_start() LocalName: book URI null =

DataValueslterator

DataValueslterator

Tokenlterator

Childlterator

Variablelterator

bib.xml

Type: element_start() LocalName: author URI null

a

Variablelterator

Aitem:.item

Exercise 2 - Optimisation
Here is a more user-friendly version of the tree:

node constructor
(element, res)

; node constructor

node constructor (element, count)

function call (element, a)
(distinct-values)

descendant
or self

descendant
or self

constant

function call
(count)

(,,bib.xml")

We define our cost function as the number of nodes which are read/used during

execution.

The current cost is
Cl1=1+5+A(5+1+4+B*7) =6+ 10A + 7AB

3.2. Generally speaking, optimising is about identifying operations which can be
removed (not necessary) or optimised(i.e., executed only once). This is for example the
case for common subexpressions:

node constructor
(element, a)

or self

‘constant

(,,bib.xml") / constant

{,,bib.xml*)

For such an expression, we can introduce a let statement and a temporary variable,
which will be executed once for each context where it is executed several times (i.e.
here, outside the outermost for loop). We then use this temporary variable wherever
this common subexpression was used.

oot s
{author)

This is equivalent to the following query:
let $c := doc(bib.xml'™)

for $a in distinct-values($c//author)
return <res>

<name>{$a}</name>

<count>

gount($c//book[author = $al)

</count>
</res>

The new cost is
C2 =3+1+4+A(5+1+3+B(7)) =8 + 9A+7AB

This is better when C1>C2, i.e., as soon as A>2, which is the case in practice.

In a broader scope, the query could be optimized by
e Using Indexes on the inner loop
e Recognizing the GROUP BY semantics, and rewriting it to use an explicit GROUP
BY operator which could be based on sorting or hashing

	Solution Sheet 10
	XQuery Implementation and Optimisation

