Formal Foundations: Conjunctive Queries and Datalog Prof. Dr. Peter Fischer Web Science Universität Freiburg SS 2012 Seite 1 # Background Prof. Dr. Peter Fischer - Lecture so far: - "Rich" query languages for specific application domains - High level of complexity and expressiveness - Features before semantics and complexity - Remainder of lecture - Toy languages with limited expressives - Strong semantics and complexity understanding - Desirable properties (e.g. containment decidable) - Results applicable to (subsets of) "rich" languages ## Areas to study - Conjunctive Queries: simple, core of most query languages, very well studied - Query containment: classical query optimization problem - Datalog: Recursion, gradual increase of expressiveness ### Relational Model - We assume that a countably infinite set attr of attributes is fixed. - The *domain* is a countably infinite set **dom** (disjoint from **attr**). - A constant is an element of dom. - A relation schema is simply a relation name R, with arity(R) = n (written as R[n]). - lacksquare A database schema is a nonempty finite set $\mathcal R$ of relation names. - A tuple over a (possibly empty) finite set U of attributes (or over a relation schema R[U]) is a total mapping u from U to **dom**. - or, a *tuple* is an ordered *n*-tuple $(n \ge 0)$ of constants an element of the Cartesian product **dom**ⁿ. - lacksquare A database instance is a finite set $\mathcal I$ that is the union of tuples. # Conjunctive Queries #### Definition Prof. Dr. Peter Fischer A conjunctive Query Q over a database schema \mathcal{R} is given as $$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}),$$ such that for 1 < i < n - \blacksquare R_i a relation name in \mathcal{R} and - \vec{U} and \vec{U}_i vectors of variables and constants: - \blacksquare any variable appearing in \vec{U} appears also in some $\vec{U_i}$. - Left to \leftarrow is the *head* of the query, and to the right there is the *body*. The atoms in the body are also called subgoals. Sales(Part, Supplier, Customer), Part(PName, Type), Cust(CName, CAddr), Supp(SName, SAddr). $Q: \qquad \textit{ans}(T) \leftarrow \textit{Sales}(P, S, C), \textit{Part}(P, T), \textit{Cust}(C, A), \textit{Supp}(S, A)$ $$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}).$$ #### Answer - The set of answers Q w.r.t. an instance \mathcal{I} is denoted $Q(\mathcal{I})$. - If there is a substitution (mapping) σ from the variables in $\vec{U_1}, \ldots, \vec{U_n}$ to the constants in **dom**, such that $\sigma(R_1(\vec{U_1})), \ldots, \sigma(R_n(\vec{U_n})) \in \mathcal{I}$, then by applying the same substitution σ to \vec{U} , we say that $\sigma(ans(\vec{U}))$ is an answer in $Q(\mathcal{I})$. - Note that a substitution is a function such that a variable is mapped into only one constant, and a constant is mapped into itself. $$ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n}).$$ ## Complexity of Query Answering Let Q be a conjunctive query and \mathcal{I} a database instance. what is the complexity of computing all the answers of $Q(\mathcal{I})$? N^{m} where N is the size of \mathcal{I} (number of constants in \mathcal{I}), and m the size of the query (number of distinct variables in Q). ## Boolean Conjunctive Query true $$\leftarrow R_1(\vec{U_1}), \ldots, R_n(\vec{U_n}).$$ - Boolean conjunctive query answering is a decision problem. - The complexity of the boolean conjunctive query answering is NP-complete. Prof. Dr. Peter Fischer 12. Juli 2012 Seite 9 ### **Decision Problems** - Problems where the answer is "yes" or "no" - Formally, - \blacksquare A language L over some alphabet Σ . - An *instance* is given as a word $x \in \Sigma^*$. - **Question:** whether $x \in L$ holds - The resources (i.e., either time or space) required in the worst case to find the correct answer for any instance x of a problem L is referred to as the complexity of the problem L ## NP-completeness proof - The problem is in NP: - Guess a substitution (mapping) from all the variables in Q to a set of constants in I. - Check whether the substitution makes the subgoals in the body true. - The problem is NP hard: reduction from 3-SAT. $$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$ ## NP-completeness proof The problem is NP hard: reduction from 3-SAT. $$(v_1 \vee v_2 \vee \bar{v_3}) \wedge (v_1 \vee \bar{v_2} \vee \bar{v_4}) \wedge (\bar{v_1} \vee v_3 \vee v_4)$$ \mathcal{I} : r(1,1,1), r(1,1,0), r(1,0,1), r(1,0,0), r(0,1,1), r(0,1,0), r(0,0,1), c(1,0), c(0,1). Q: $r(v_1,v_2,nv_3)$, $r(v_1,nv_2,nv_4)$, $r(nv_1,v_3,v_4)$, $c(v_1,nv_1)$, $c(v_2,nv_2)$, $c(v_3,nv_3)$, $c(v_4,nv_4)$. ### Interesting Problems Let Q, Q_1, Q_2 be conjunctive queries. Containment: $Q_1 \sqsubseteq Q_2$, i.e., $Q_1(\mathcal{I}) \subseteq Q_2(\mathcal{I})$ for any instance \mathcal{I} ? Equivalence: $Q_1 \equiv Q_2$, i.e., $Q_1 \sqsubseteq Q_2$ and $Q_2 \sqsubseteq Q_1$? Minimization: Given Q_1 , construct an equivalent query Q_2 , which has as most as much subgoals in its body as Q_1 and is minimal in the sense, that any query Q_3 being equivalent to Q_2 has at least as much subgoals in the body as Q_2 . Q_2 is called *minimal*. Sales(Part, Supplier, Customer), Part(PName, Type), Cust(CName, CAddr), Supp(SName, SAddr). #### Equivalent queries: $$Q:$$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$ $$Q': \qquad \textit{ans}(T) \leftarrow \textit{Sales}(P, S, C), \textit{Part}(P, T), \textit{Cust}(C, A), \textit{Supp}(S, A), \\ \textit{Sales}(P', S', C'), \textit{Part}(P', T)$$ ## Motivation and Applications - Fundamentally interesting problem - Enables removing redundant subgoals - Validate query transformations (i.e. possible optimizations) - Detecting independence of queries from updates - Semantic caching - Answering queries using views #### Lemma Let $$Q_1$$: $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ Q_2 : $ans(\vec{U}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ be conjunctive queries, where $$\{R_1(\vec{U_1}), \dots, R_n(\vec{U_n})\} \supseteq \{S_1(\vec{V_1}), \dots, S_m(\vec{V_m})\}$$ Then $Q_1 \sqsubseteq Q_2$. #### Substitution - A substitution θ over a set of variables $\mathcal V$ is a mapping from $\mathcal V$ to $\mathcal V \cup \operatorname{dom}$, where dom a corresponding domain. - We extend θ to constants $a \in \mathbf{dom}$ and relation names $R \in \mathcal{R}$, where $\theta(a) = a$, resp. $\theta(R) = R$. #### Consider $$Q:$$ ans $(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$ $$Q': ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$$ and θ : ## Containment Mapping Given conjunctive queries $$Q_1:$$ ans $(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ $Q_2:$ ans $(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ Substitution θ is called *containment mapping* from Q_2 to Q_1 , if Q_2 can be transformed by means of θ to become Q_1 : - \bullet $\theta(ans(\vec{V})) = ans(\vec{U}),$ - for $i=1,\ldots,m$ there exists a $j\in\{1,\ldots,n\}$, such that $\theta(S_i(\vec{V_i}))=R_j(\vec{U_j})$. $$Q: ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$$ $$Q'$$: $ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A), Sales(P', S', C'), Part(P', T)$ θ : θ is a containment mapping. Prof. Dr. Peter Fischer 12. Juli 2012 Seite 20 #### Theorem Let $$Q_1:$$ $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ be conjunctive queries. $Q_1 \sqsubseteq Q_2$ iff there exists a containment mapping θ from Q_2 to Q_1 . #### Proof " \Leftarrow ": #### Intuition: - Given the containment mapping, and a substitution that proves $t \in Q1$, we can construct a substitution to prove $t \in Q2$ - Q2 may have more answers than Q1 because Q1 may have additional subgoals that further restrict its answers #### Formal: There exists containment mapping θ . Let \mathcal{I} be an instance of Q_1 and let $\mu \in Q_1(\mathcal{I})$. There exists a substitution τ , such that $\tau(\vec{U}_j) \in \mathcal{I}(R_j)$, $j \in \{1, ..., n\}$ and $\mu = \tau(\vec{U})$. Consider a substitution $\tau' = \tau \circ \theta$ and further $\tau'(S_i(\vec{V}_i))$. There holds $\tau'(\vec{V}_i) \in \mathcal{I}(S_i)$, $i \in \{1, \dots, m\}$ and therefore also $\mu = \tau'(\vec{V})$. D.h., $\mu \in Q_2(\mathcal{I})$. #### Canonical Instance Let Q be a conjunctive $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ over a database schema \mathcal{R} . The canonical instance \mathcal{I}_Q to Q is constructed as follows. \mathcal{I}_Q is an instance of $\mathcal{R} = \{R_1, \dots, R_n\}$. Let τ be a substitution, which assigns to any X in Q an unique constant a_X . ■ For any literal $R(t_1, \ldots, t_n)$ in the body, insert a tupel of the form $(\tau(t_1), \ldots, \tau(t_n))$ into $\mathcal{I}_Q(R)$; we also write $\tau(R(t_1, \ldots, t_n)) \in \mathcal{I}_Q(R)$. No other tuples are inserted into $\mathcal{I}_Q(R)$. au is called *canonical substitution*. Intuition: Frozen conjunctive query - Create unique constant for each variable in Q - Database only contains the subgoals of Q in a "frozen" form $$Q:$$ $ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A)$ $Q':$ $ans(T) \leftarrow Sales(P, S, C), Part(P, T), Cust(C, A), Supp(S, A),$ $Sales(P', S', C'), Part(P', T)$ \mathcal{I}_Q : $\mathcal{I}_{Q'}$: #### Proof "⇒": $Q_1 \sqsubseteq Q_2$. Consider \mathcal{I}_{Q_1} and the corresponding canonical substitution τ . Then $\tau(ans(\vec{U})) \in Q_1(\mathcal{I}_{Q_1})$. Because of $Q_1 \sqsubseteq Q_2$ further $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$. Thus, there exists a substitution ρ , such that $\rho(S_i(\vec{V_i})) = \tau(R_j(\vec{U_j})), 1 \leq i \leq m$, $j \in \{1, \dots, n\}$ und $\rho(\mathsf{ans}(\vec{V})) = \tau(\mathsf{ans}(\vec{U}))$. $\tau^{-1} \circ \rho$ is a containment mapping. ### Corollary Let $$Q_1:$$ $ans(\vec{U}) \leftarrow R_1(\vec{U_1}), \dots, R_n(\vec{U_n})$ $Q_2:$ $ans(\vec{V}) \leftarrow S_1(\vec{V_1}), \dots, S_m(\vec{V_m})$ be conjunctive queries, \mathcal{I}_{Q_1} the canonical instance to Q_1 with canonical substitution τ . $$Q_1 \sqsubseteq Q_2$$, iff $au(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$. Proof: We show, whenever $\tau(ans(\vec{U})) \in Q_2(\mathcal{I}_{Q_1})$, then $Q_1 \sqsubseteq Q_2$. For any S_j in Q_2 , \mathcal{I}_{Q_1} is not empty. Therefore, for S_j there exists a R_i , such that $S_j = R_i$. Further, there exists a substitution ρ , such that for $S_j(\vec{V}_j)$ we have $\rho(V_j) \in \mathcal{I}_{Q_1}(R_i)$. $\rho \circ \tau^{-1}$ is a containment mapping from Q_2 to Q_1 . $$ans(a_T) \in Q(\mathcal{I}_{Q'})$$ and $$ans(a_T) \in Q'(\mathcal{I}_Q).$$